Matching Items (15)
Filtering by

Clear all filters

133892-Thumbnail Image.png
Description
Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related

Alzheimer’s Disease (AD) affects over 5 million individuals in the U.S. and has a direct cost estimated in excess of $200 billion per year. Broadly speaking, there are two forms of AD—early-onset, familial AD (FAD) and late-onset-sporadic AD (SAD). Animal models of AD, which rely on the overexpression of FAD-related mutations, have provided important insights into the disease. However, these models do not display important disease-related pathologies and have been limited in their ability to model the complex genetics associated with SAD.

Advances in cellular reprogramming, have enabled the generation of in vitro disease models that can be used to dissect disease mechanisms and evaluate potential therapeutics. To that end, efforts by many groups, including the Brafman laboratory, to generated patient-specific hiPSCs have demonstrated the promise of studying AD in a simplified and accessible system. However, neurons generated from these hiPSCs have shown some, but not all, of the early molecular and cellular hallmarks associated with the disease. Additionally, phenotypes and pathological hallmarks associated with later stages of the human disease have not been observed with current hiPSC-based systems. Further, disease relevant phenotypes in neurons generated from SAD hiPSCs have been highly variable or largely absent. Finally, the reprogramming process erases phenotypes associated with cellular aging and, as a result, iPSC-derived neurons more closely resemble fetal brain rather than adult brain.

It is well-established that in vivo cells reside within a complex 3-D microenvironment that plays a significant role in regulating cell behavior. Signaling and other cellular functions, such as gene expression and differentiation potential, differ in 3-D cultures compared with 2-D substrates. Nonetheless, previous studies using AD hiPSCs have relied on 2-D neuronal culture models that do not reflect the 3-D complexity of native brain tissue, and therefore, are unable to replicate all aspects of AD pathogenesis. Further, the reprogramming process erases cellular aging phenotypes. To address these limitations, this project aimed to develop bioengineering methods for the generation of 3-D organoid-based cultures that mimic in vivo cortical tissue, and to generate an inducible gene repression system to recapitulate cellular aging hallmarks.
ContributorsBounds, Lexi Rose (Author) / Brafman, David (Thesis director) / Wang, Xiao (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133936-Thumbnail Image.png
Description
The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove one copy of the S6K1 gene in 3xTg-AD mice by

The aims of this project are: (i) to identify structural and molecular changes in the brains of 3xTg-AD mice and (ii) to determine whether decreasing S6K1 protects the brain from these changes. To achieve our goals, we decided to remove one copy of the S6K1 gene in 3xTg-AD mice by breeding them with S6K1 knockout mice (S6K1+/-). In previous studies, we have seen that reducing S6K1 levels in 3xTg-AD mice improved spatial memory and synaptic plasticity which was associated with reduced A and tau pathology. Here, we used a multiparametric MRI to assess volumetric and blood flow changes in the brain of 20-month-old 3xTg-AD mice. We found that 3xTg-AD/S6K1+/- mice had higher blood flow and cortical volume compared to 3xTg-AD mice. However, we saw no significant differences between 3xTg-AD mice and NonTg mice. We further found A levels and plaque numbers were significantly lower in 3xTg-AD/S6K1+/- mice compared to 3xTg-AD mice. This reduction in plaques could account for the improvement in blood flow in 3xTg-AD/S6K1+/- mice. To try to understand the reason behind the increase in cortical volume in the 3xTg-AD/S6K1+/- when compared to the 3xTg-AD, we measured markers of synaptic density, PSD95, and synaptophysin. We found that PSD95 levels were not different between the four groups. However, synaptophysin levels were significantly lower in 3xTg-AD mice compared to NonTg levels and returned to baseline levels in 3xTg-AD mice lacking one copy of the S6K1 gene. This difference in synaptophysin could explain, at least in part, the difference in volume between the four groups analyzed. Overall, this represents the first evidence showing that reducing mTOR signaling improves blood flow and cortical volume in a mouse model of AD.
ContributorsShukla, Prakriti (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Jankowsky, Joanna (Committee member) / School of Molecular Sciences (Contributor) / School of Public Affairs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and

To date, it has been difficult to elucidate the role of tau in learning and memory during adulthood due to developmental compensation of other microtubule associated proteins in Tau knockout (KO) mice. Here, we generated an adeno-associated virus (AAV) expressing a doxycycline (doxy)-inducible short-hairpin (sh) RNA targeted to tau, and stereotaxically and bilaterally injected 7-month-old C57BL/6 mice with either the AAV-shRNAtau or an AAV expressing a scramble shRNA sequence. Seven days after the injections, all animals were administered doxy for thirty-five days to induce expression of shRNAs, after which they were tested in the open field, rotarod and Morris water maze (MWM) to assess anxiety like behavior, motor coordination and spatial reference memory, respectively. Our results show that reducing tau in the adult hippocampus produces significant impairments in motor coordination, endurance and spatial memory. Tissue analyses shows that tau knockdown reduces hippocampal dendritic spine density and the levels of BDNF and synaptophysin, two proteins involved in memory formation and plasticity. Our approach circumvents the developmental compensation issues observed in Tau KO models and shows that reducing tau levels during adulthood impairs cognition.
ContributorsTran, An Le (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Roberson, Erik (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
132958-Thumbnail Image.png
Description
Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins that contribute to cell growth and learning and memory. Hyperactivity

Alzheimer’s disease (AD) is characterized by the aberrant accumulation and aggregation of proteins that in turn contribute to learning and memory deficits. The mammalian target of rapamycin (mTOR) plays an essential role in regulating the synthesis and degradation of proteins that contribute to cell growth and learning and memory. Hyperactivity of mTOR can cause detrimental effects to protein homeostasis and has been linked to AD. The proline-rich Akt-substrate 40 kDa (PRAS40) is a negative regulator of mTOR, as it binds to mTOR directly, reducing its activity. Upon phosphorylation, PRAS40 detaches from mTOR thereby releasing its inhibitory effects. Increased phosphorylation of PRAS40, and a subsequent increase in mTOR activity has been linked to diabetes, cancer, and other conditions; however, PRAS40’s direct role in the pathogenesis of AD is still unclear. To investigate the role of PRAS40 in AD pathology, we generated a PRAS40 conditional knockout mouse model and, using a neuronal-specific Cre recombinase, selectively removed PRAS40 from APP/PS1 mice. Removing neuronal PRAS40 exacerbated Abeta levels and plaque load but paradoxically had no significant effects on mTOR signaling. Mechanistically, the increase in Abeta pathology was linked to a decrease in autophagy function. Our data highlight a primary role of PRAS40 in the pathogenesis of AD.
ContributorsSurendra, Likith (Author) / Oddo, Salvatore (Thesis director) / Velazquez, Ramon (Committee member) / Pratico, Domenico (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134045-Thumbnail Image.png
Description
The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory

The mammalian target of rapamycin (mTOR) is integral in regulating cell growth as it maintains a homeostatic balance of proteins by modulating their synthesis and degradation. In the brain, mTOR regulates protein-driven neuroplastic changes that modulate learning and memory. Nevertheless, upregulation of mTOR can cause detrimental effect in spatial memory and synaptic plasticity. The proline-rich Akt-substrate 40 kDa (PRAS40) is a key negative regulator of mTOR, as it binds mTOR and directly reduces its activity. To investigate the role of PRAS40 on learning and memory, we generated a transgenic mouse model in which we used the tetracycline-off system to regulate the expression of PRAS40 specifically in neurons of the hippocampus. After induction, we found that mice overexpressing PRAS40 performed better than control mice in the Morris Water Maze behavioral test. We further show that the improvement in memory was associated with a decrease in mTOR signaling, an increase in dendritic spines in hippocampal pyramidal neurons, and an increase in the levels of brain-derived neurotrophic factor (BDNF), a neurotrophin necessary for learning and memory. This is the first evidence that shows that increasing PRAS40 in the mouse brain enhances learning and memory deficits.
ContributorsSarette, Patrick William (Author) / Oddo, Salvatore (Thesis director) / Caccamo, Antonella (Committee member) / Kelleher, Raymond (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134059-Thumbnail Image.png
Description
With no known cure, Alzheimer's disease (AD) is the most common dementia, affecting more than 5.5 million Americans. Research has shown that women who undergo surgical menopause (i.e. removal of the ovaries) before the onset of natural menopause are at a greater risk for AD. It is hypothesized that this

With no known cure, Alzheimer's disease (AD) is the most common dementia, affecting more than 5.5 million Americans. Research has shown that women who undergo surgical menopause (i.e. removal of the ovaries) before the onset of natural menopause are at a greater risk for AD. It is hypothesized that this greater relative risk of developing AD is linked to ovarian hormone deprivation associated with surgical menopause. The purpose of these studies was to evaluate the behavioral changes that occur after a short-term (ST) and a long-term (LT) ovarian hormone deprivation in a mouse model of AD. Wildtype (Wt) or APP/PS1 (Tg) mutation mice underwent either a sham surgery or an ovariectomy (Ovx) surgery at three months of age. Study 1 consisted of a short-term cohort that was behaviorally tested one month following surgery on a battery of spatial memory tasks including, the Morris water maze, delayed matched-to-sample water maze, and visible platform task. Study 2 consisted of a long-term cohort that was behaviorally tested on the same cognitive battery three months following surgery. Results of Study 1 revealed that genotype interacted with surgical menopause status, such that after a short-term ovarian hormone deprivation, Ovx induced a genotype effect while Sham surgery did not. Results of Study 2 showed a similar pattern of effects, with a comparable interaction between genotypes and surgical menopause status. These findings indicate that the cognitive impact of ovarian hormone deprivation depends on AD-related genotype. Neuropathology evaluations in these mice will be done in the near future and will allow us to test relations between surgical menopause status, cognition, and AD-like neuropathology.
ContributorsPalmer, Justin M. (Author) / Bimonte-Nelson, Heather (Thesis director) / Oddo, Salvatore (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
137762-Thumbnail Image.png
Description
This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to

This paper explores the use of different classroom management styles by teachers engaged in a study. The study was focused on testing an educational computer program called The Doctor's Cure in s southwester school district with ready access to computers. The Doctor's Cure uses interactive storytelling and transformational play to teach seventh graders how to write persuasively. The definitions of student centered and teacher centered management styles used in this paper are drawn from Garret (2008) which suggests that teachers are not entirely one management style or the other, but a mix of the two. This paper closely examines three teachers, two with teacher centered styles and one with a student centered style in order to see which style was most effective in promoting the learning of persuasive writing skills. The findings tentatively indicate that teacher centered management styles yield larger gains in learning compared to more student centered styles.
ContributorsAyala, Joel Nicholas (Author) / Hayes, Elisabeth (Thesis director) / Siyahhan, Sinem (Committee member) / Holmes, Jeff (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
148500-Thumbnail Image.png
Description

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of

As life expectancy increases worldwide, age related diseases are becoming greater health concerns. One of the most prevalent age-related diseases in the United States is dementia, with Alzheimer’s disease (AD) being the most common form, accounting for 60-80% of cases. Genetics plays a large role in a person’s risk of developing AD. Familial AD, which makes up less than 1% of all AD cases, is caused by autosomal dominant gene mutations and has almost 100% penetrance. Genetic risk factors are believed to make up about 49%-79% of the risk in sporadic cases. Many different genetic risk factors for both familial and sporadic AD have been identified, but there is still much work to be done in the field of AD, especially in non-Caucasian populations. This review summarizes the three major genes responsible for familial AD, namely APP, PSEN1 and PSEN2. Also discussed are seven identified genetic risk factors for sporadic AD, single nucleotide polymorphisms in the APOE, ABCA7, NEDD9, CASS4, PTK2B, CLU, and PICALM genes. An overview of the main function of the proteins associated with the genes is given, along with the supposed connection to AD pathology.

ContributorsRichey, Alexandra Emmeline (Author) / Brafman, David (Thesis director) / Raman, Sreedevi (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05