Matching Items (6)
Filtering by

Clear all filters

152881-Thumbnail Image.png
Description
Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense

Dexterous manipulation is a representative task that involves sensorimotor integration underlying a fine control of movements. Over the past 30 years, research has provided significant insight, including the control mechanisms of force coordination during manipulation tasks. Successful dexterous manipulation is thought to rely on the ability to integrate the sense of digit position with motor commands responsible for generating digit forces and placement. However, the mechanisms underlying the phenomenon of digit position-force coordination are not well understood. This dissertation addresses this question through three experiments that are based on psychophysics and object lifting tasks. It was found in psychophysics tasks that sensed relative digit position was accurately reproduced when sensorimotor transformations occurred with larger vertical fingertip separations, within the same hand, and at the same hand posture. The results from a follow-up experiment conducted in the same digit position-matching task while generating forces in different directions reveal a biased relative digit position toward the direction of force production. Specifically, subjects reproduced the thumb CoP higher than the index finger CoP when vertical digit forces were directed upward and downward, respectively, and vice versa. It was also found in lifting tasks that the ability to discriminate the relative digit position prior to lifting an object and modulate digit forces to minimize object roll as a function of digit position are robust regardless of whether motor commands for positioning the digits on the object are involved. These results indicate that the erroneous sensorimotor transformations of relative digit position reported here must be compensated during dexterous manipulation by other mechanisms, e.g., visual feedback of fingertip position. Furthermore, predicted sensory consequences derived from the efference copy of voluntary motor commands to generate vertical digit forces may override haptic sensory feedback for the estimation of relative digit position. Lastly, the sensorimotor transformations from haptic feedback to digit force modulation to position appear to be facilitated by motor commands for active digit placement in manipulation.
ContributorsShibata, Daisuke (Author) / Santello, Marco (Thesis advisor) / Dounskaia, Natalia (Committee member) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / McBeath, Michael (Committee member) / Arizona State University (Publisher)
Created2014
136790-Thumbnail Image.png
Description
Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons,

Communication amongst eusocial insect is key to their success. Ants rely on signaling to mediate many different functions within a colony such as policing and nest mate recognition. Camponotus floridanus uses chemosensory signaling in the form of cuticular hydrocarbons to regulate these functions. Each cuticular hydrocarbon profile contains numerous hydrocarbons, however it is yet to be seen if Camponotus floridanus can discriminate between linear hydrocarbons of similar length. Individual specimens were conditioned in three different ways: 5 conditioning with high concentration of sugar water (1;1 ratio), 1 conditioning with high concentration of sugar water, and 5 conditioning with low concentration of sugar water (1;4). Two linear hydrocarbons were use, C23 and C24, with C23 always being the conditioned stimulus. Specimens who were conditioned 5 times with high concentration of sugar water were the only group to show a significant response to the conditioned stimulus with a p-value of .008 and exhibited discrimination behavior 46% of the time. When compared 5 conditioning with high concentration to the other two testing conditioning groups, 1 conditioning with high concentration produced an insignificant p-value of .13 was obtained whereas when comparing it with 5 conditioning low concentration of sugar a significant p-value of .0132 was obtained. This indiciates that Camponotus floridanus are capable of discrimination however must be conditioned with high concentration of sugar water, while number of conditioning is insignificant.
ContributorsDamari, Ben Aviv (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Pratt, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136060-Thumbnail Image.png
Description
ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of

ABSTRACT Communication is vital in the context of everyday life for all organisms, but particularly so in social insects, such as Z. nevadensis. The overall lifestyle and need for altruistic acts of individuals within a colony depends primarily on intracolony chemical communication, with a focus on odorants. The perception of these odorants is made possible by the chemoreceptive functions of sensilla basiconica and sensilla trichoid which exist on the antennal structure. The present study consists of both a morphological analysis and electrophysiological experiment concerning sensilla basiconica. It attempts to characterize the function of neurons present in sensilla basiconica through single sensillum recordings and contributes to existing literature by determining if a social insect, such as the dampwood termite, is able to perceive a wide spectrum of odorants despite having significantly fewer olfactory receptors than most other social insect species. Results indicated that sensilla basiconica presence significantly out-paced that of sensilla trichoid and sensilla chaetica combined, on all flagellomeres. Analysis demonstrated significant responses to all general odorants and several cuticular hydrocarbons. Combined with the knowledge of fewer olfactory receptors present in this species and their lifestyle, results may indicate a positive association between the the social complexity of an insect's lifestyle and the number of ORs the individuals within that colony possess.
ContributorsMcGlone, Taylor (Author) / Liebig, Juergen (Thesis director) / Ghaninia, Majid (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
153202-Thumbnail Image.png
Description
Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries

Traumatic brain injury (TBI) most frequently occurs in pediatric patients and remains a leading cause of childhood death and disability. Mild TBI (mTBI) accounts for 70-90% of all TBI cases, yet its neuropathophysiology is still poorly understood. While a single mTBI injury can lead to persistent deficits, repeat injuries increase the severity and duration of both acute symptoms and long term deficits. In this study, to model pediatric repetitive mTBI (rmTBI) we subjected unrestrained juvenile animals (post-natal day 20) to repeat weight drop impact. Animals were anesthetized and subjected to sham or rmTBI once per day for 5 days. At 14 days post injury (PID), magnetic resonance imaging (MRI) revealed that rmTBI animals displayed marked cortical atrophy and ventriculomegaly. Specifically, the thickness of the cortex was reduced up to 46% beneath and the ventricles increased up to 970% beneath the impact zone. Immunostaining with the neuron specific marker NeuN revealed an overall loss of neurons within the motor cortex but no change in neuronal density. Examination of intrinsic and synaptic properties of layer II/III pyramidal neurons revealed no significant difference between sham and rmTBI animals at rest or under convulsant challenge with the potassium channel blocker, 4-Aminophyridine. Overall, our findings indicate that the neuropathological changes reported after pediatric rmTBI can be effectively modeled by repeat weight drop in juvenile animals. Developing a better understanding of how rmTBI alters the pediatric brain may help improve patient care and direct "return to game" decision making in adolescents.
ContributorsGoddeyne, Corey (Author) / Anderson, Trent (Thesis advisor) / Smith, Brian (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
151390-Thumbnail Image.png
Description
Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space.

Our ability to estimate the position of our body parts in space, a fundamentally proprioceptive process, is crucial for interacting with the environment and movement control. For proprioception to support these actions, the Central Nervous System has to rely on a stored internal representation of the body parts in space. However, relatively little is known about this internal representation of arm position. To this end, I developed a method to map proprioceptive estimates of hand location across a 2-d workspace. In this task, I moved each subject's hand to a target location while the subject's eyes were closed. After returning the hand, subjects opened their eyes to verbally report the location of where their fingertip had been. Then, I reconstructed and analyzed the spatial structure of the pattern of estimation errors. In the first couple of experiments I probed the structure and stability of the pattern of errors by manipulating the hand used and tactile feedback provided when the hand was at each target location. I found that the resulting pattern of errors was systematically stable across conditions for each subject, subject-specific, and not uniform across the workspace. These findings suggest that the observed structure of pattern of errors has been constructed through experience, which has resulted in a systematically stable internal representation of arm location. Moreover, this representation is continuously being calibrated across the workspace. In the next two experiments, I aimed to probe the calibration of this structure. To this end, I used two different perturbation paradigms: 1) a virtual reality visuomotor adaptation to induce a local perturbation, 2) and a standard prism adaptation paradigm to induce a global perturbation. I found that the magnitude of the errors significantly increased to a similar extent after each perturbation. This small effect indicates that proprioception is recalibrated to a similar extent regardless of how the perturbation is introduced, suggesting that sensory and motor changes may be two independent processes arising from the perturbation. Moreover, I propose that the internal representation of arm location might be constructed with a global solution and not capable of local changes.
ContributorsRincon Gonzalez, Liliana (Author) / Helms Tillery, Stephen I (Thesis advisor) / Buneo, Christopher A (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2012