Matching Items (5)
Filtering by

Clear all filters

Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171614-Thumbnail Image.png
Description
Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle

Ecology has been an actively studied topic recently, along with the rapid development of human microbiota-based technology. Scientists have made remarkable progress using bioinformatics tools to identify species and analyze composition. However, a thorough understanding of interspecies interactions of microbial ecosystems is still lacking, which has been a significant obstacle in the further development of related technologies. In this work, a genetic circuit design principle with synthetic biology approaches is developed to form two-strain microbial consortia with different inter-strain interactions. The microbial systems are well-defined and inducible. Co-culture experiment results show that our microbial consortia behave consistently with previous ecological knowledge and thus serves as excellent model systems to simulate ecosystems with similar interactions. Colony patterns also emerge when co-culturing multiple species on solid media. With the engineered microbial consortia, image-processing based methods were developed to quantify the shape of co-culture colonies and distinguish microbial consortia with different interactions. Factors that affect the population ratios were identified through induction and variations in the inoculation process. Further time-lapse experiments revealed the basic rules of colony growth, composition variation, patterning, and how spatial factors impact the co-culture colony.
ContributorsChen, Xingwen (Author) / Wang, Xiao (Thesis advisor) / Kuang, Yang (Committee member) / Tian, Xiaojun (Committee member) / Brafman, David (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2022
131976-Thumbnail Image.png
Description
The purpose of this project was to characterize the mucin layer in patients with eosinophilic esophagitis (EoE). EoE is a chronic disease that is characterized by eosinophilic inflammation in the esophagus. The current diagnosis and standard of care for patients with EoE is less than ideal. Diagnosis is highly invasive

The purpose of this project was to characterize the mucin layer in patients with eosinophilic esophagitis (EoE). EoE is a chronic disease that is characterized by eosinophilic inflammation in the esophagus. The current diagnosis and standard of care for patients with EoE is less than ideal. Diagnosis is highly invasive as it requires histological confirmation of eosinophilic inflammation in the esophagus, the patient must undergo an upper endoscopy to obtain the tissue sample. The histology as determined by the pathologist is subjective not quantitative which causes significant error in diagnosis. The current treatment methods are dietary therapy or corticosteroids, which require significant cost and time. The pathology of EoE is largely unknown, though it is known to involve allergic inflammatory and type-2 cytokine-mediated responses. Past studies have determined the genetic expression of mucins to be varied in the esophagi of EoE patients using RNA sequencing techniques. The varied expression of mucins in the esophagi of EoE patients has not been validated at the protein level. This study sought to better define mucin protein expression, specifically that of MUC1, MUC4, and MUC7, in the esophagi of EoE patients (n=4) and control patients (n=3). This was accomplished using histological staining. The tissue samples were stained for eosinophil peroxidase (EPX) in order to visualize the eosinophils, which are a pathological marker of EoE. The results of this study showed a qualitative increase in the protein expression of MUC4 in patients with EoE, indicating that MUC4 may play a protective role in the body’s defense against EoE. MUC1 and MUC7 staining showed no pattern. This study defined the conditions necessary for precise staining of esophageal tissues with the MUC4 8G7 antibody. The orientation of the tissue samples on the slides and the small sample size created significant difficulty in analysis and inhibited quantitative analysis. Future studies with tissue orientation standardization and greater sample size are needed to confirm the findings of this study. If verified, the increase of MUC4 protein expression in patients with EoE has implications for EoE diagnostics and therapeutics.
ContributorsCall, Abigail (Author) / Plaisier, Christopher (Thesis director) / Jacobsen, Elizabeth (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131681-Thumbnail Image.png
Description
Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient

Malignant Pleural Mesothelioma is a type of lung cancer usually discovered at an advanced stage at which point there is no cure. Six primary MPM cell lines were used to conduct in vitro research to make conclusions about specific gene mutations associated with Mesothelioma. DNA exome sequencing, a time efficient and inexpensive technique, was used for identifying specific DNA mutations. Computational analysis of exome sequencing data was used to make conclusions about copy number variation among common MPM genes. Results show a CDKN2A gene heterozygous deletion in Meso24 cell line. This data is validated by a previous CRISPR-Cas9 outgrowth screen for Meso24 where the knocked-out gene caused increased Meso24 growth.
ContributorsKrdi, Ghena (Author) / Plaisier, Christopher (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor) / Hugh Downs School of Human Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains

Recent studies in traumatic brain injury (TBI) have found a temporal window where therapeutics on the nanometer scale can cross the blood-brain barrier and enter the parenchyma. Developing protein-based therapeutics is attractive for a number of reasons, yet, the production pipeline for high yield and consistent bioactive recombinant proteins remains a major obstacle. Previous studies for recombinant protein production has utilized gram-negative hosts such as Escherichia coli (E. coli) due to its well-established genetics and fast growth for recombinant protein production. However, using gram-negative hosts require lysis that calls for additional optimization and also introduces endotoxins and proteases that contribute to protein degradation. This project directly addressed this issue and evaluated the potential to use a gram-positive host such as Brevibacillus choshinensis (Brevi) which does not require lysis as the proteins are expressed directly into the supernatant. This host was utilized to produce variants of Stock 11 (S11) protein as a proof-of-concept towards this methodology. Variants of S11 were synthesized using different restriction enzymes which will alter the location of protein tags that may affect production or purification. Factors such as incubation time, incubation temperature, and media were optimized for each variant of S11 using a robust design of experiments. All variants of S11 were grown using optimized parameters prior to purification via affinity chromatography. Results showed the efficiency of using Brevi as a potential host for domain antibody production in the Stabenfeldt lab. Future aims will focus on troubleshooting the purification process to optimize the protein production pipeline.
ContributorsEmbrador, Glenna Bea Rebano (Author) / Stabenfeldt, Sarah (Thesis director) / Plaisier, Christopher (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05