Matching Items (7)
Filtering by

Clear all filters

136837-Thumbnail Image.png
Description
Noninvasive prenatal testing using cell-free fetal DNA (CffDNA) testing is a rapidly developing area in prenatal diagnosis. Fetal genetic testing can occur with a simple maternal blood sample, since CffDNA can be found in maternal plasma. Thus, no harm is caused to mother or fetus to obtain this genetic information,

Noninvasive prenatal testing using cell-free fetal DNA (CffDNA) testing is a rapidly developing area in prenatal diagnosis. Fetal genetic testing can occur with a simple maternal blood sample, since CffDNA can be found in maternal plasma. Thus, no harm is caused to mother or fetus to obtain this genetic information, providing significant benefits for those users. How the test should be integrated in existing prenatal programs has yet to be seen. CffDNA testing is an exciting technology and has attracted attention from many stakeholders, yet the lack of regulation and guidance has left legal, ethical, and social questions unanswered. This paper outlines a number of those issues expressed in the present literature on the matter.
ContributorsVeeder, Shaylynn Lee (Author) / Marchant, Gary (Thesis director) / Robert, Jason (Committee member) / Milleson, Valerye (Committee member) / Barrett, The Honors College (Contributor) / School of Social Transformation (Contributor) / School of Politics and Global Studies (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Department of Psychology (Contributor)
Created2014-05
136378-Thumbnail Image.png
Description
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by

While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by federal regulations. Although these companies adhere to the Uniform Anatomical Gift Act, the lack of a single entity responsible for overseeing their operations has led to public skepticism and animosity among competing businesses. Legislation has the potential to legitimize the industry. For it to be successful, however, the intricacies of a complex market that deals directly with the movement of human remains and intangible issues of human integrity and morality, must be thoroughly understood.
ContributorsGlynn, Emily Sanders (Author) / Brian, Jennifer (Thesis director) / Fisher, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of English (Contributor)
Created2015-05
136143-Thumbnail Image.png
Description
Abortion is a highly controversial procedure, and it has divided the country into two factions: pro-life and pro-choice. This intense debate is marred by anger through protests and violent actions against supporters of abortion. With all of the tension surrounding the moral significance of the abortion issue, the question arises:

Abortion is a highly controversial procedure, and it has divided the country into two factions: pro-life and pro-choice. This intense debate is marred by anger through protests and violent actions against supporters of abortion. With all of the tension surrounding the moral significance of the abortion issue, the question arises: How did specific figureheads, events, and contributing factors lead to the generation of the stigma and polarization surrounding the dichotomy of pro-life versus pro-choice abortion stances in the United States of America?
ContributorsAbdi-Moradi, Sepehr (Author) / Maienschein, Jane (Thesis director) / O'Neil, Erica (Committee member) / Abboud, Alexis (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
137562-Thumbnail Image.png
Description
The Embryo Project (EP) Encyclopedia is an online database that has consolidated hundreds of development-related research articles, with subcategories addressing the context of such research. These articles are written by undergraduate students, graduate students, and professionals in the fields of biology, history, and other fields, and are intended for a

The Embryo Project (EP) Encyclopedia is an online database that has consolidated hundreds of development-related research articles, with subcategories addressing the context of such research. These articles are written by undergraduate students, graduate students, and professionals in the fields of biology, history, and other fields, and are intended for a diverse audience of readers from both biology and non-biology related backgrounds. As the EP addresses a public audience, it is imperative to utilize all possible means to share the information that each article covers. Until 2013, the EP Encyclopedia did not present images in articles as no formal protocol for image development existed. I have created an image style guide that outlines the basic steps of creating and submitting an image that can complement an EP article and can enhance a reader's understanding of the discussed concept. In creating this style guide, I investigated similar protocols used by other scientific journals and medical professionals. I also used different programs and based my style guide off of the procedures I used in Adobe Illustrator CS6.
ContributorsHamidi, Neekta (Author) / Maienschein, Jane (Thesis director) / Crowe, Nathan (Committee member) / O'Neil, Erica (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137582-Thumbnail Image.png
Description
Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These technologies can affect everything from educational institutions to the judicial

Memory augmentation will play a vital role in the development of our future. The predicted introduction of downloadable brains will be the first of many neurocognitive technologies that will alter our lives at both the societal and individual levels. These technologies can affect everything from educational institutions to the judicial system, meanwhile raising issues such as autonomy, human psychology, and selfhood. Because of its tremendous potential, memory augmentation and its implications should thoroughly be examined.
ContributorsKim, Jinkyu (Author) / McGregor, Joan (Thesis director) / Robert, Jason (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
135765-Thumbnail Image.png
Description
The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological

The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological signals from the brain and translate those signals into commands that control an external device such as a wheelchair or a robotic exoskeleton. Despite the potential for BCIs to vastly improve the lives of almost one billion people, one question arises: Just because we can use brain-computer interfaces, should we? The human brain is an embodiment of the mind, which is largely seen to determine a person's identity, so a number of ethical and philosophical concerns emerge over current and future uses of BCIs. These concerns include privacy, informed consent, autonomy, identity, enhancement, and justice. In this thesis, I focus on three of these issues: privacy, informed consent, and autonomy. The ultimate purpose of brain-computer interfaces is to provide patients with a greater degree of autonomy; thus, many of the ethical issues associated with BCIs are intertwined with autonomy. Currently, brain-computer interfaces exist mainly in the domain of medicine and medical research, but recently companies have started commercializing BCIs and providing them at affordable prices. These consumer-grade BCIs are primarily for non-medical purposes, and so they are beyond the scope of medicine. As BCIs become more widespread in the near future, it is crucial for interdisciplinary teams of ethicists, philosophers, engineers, and physicians to collaborate to address these ethical concerns now before BCIs become more commonplace.
ContributorsChu, Kevin Michael (Author) / Ankeny, Casey (Thesis director) / Robert, Jason (Committee member) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor) / School for the Future of Innovation in Society (Contributor) / Lincoln Center for Applied Ethics (Contributor)
Created2016-05
131173-Thumbnail Image.png
Description
Genetic engineering and gene alterations are a very rich and complex issue that have been the talk of many ethical debates. Somatic and germline genetic engineering technologies are becoming more prevalent in the scientific community and could be provided for public use in a matter of time. These technologies raise

Genetic engineering and gene alterations are a very rich and complex issue that have been the talk of many ethical debates. Somatic and germline genetic engineering technologies are becoming more prevalent in the scientific community and could be provided for public use in a matter of time. These technologies raise bioethical concerns as society recognizes the challenges behind where to draw the line in use of this relatively new science. The basis of this paper is focused around a meta-analysis and systematic assessment of previous publications of major ethical debates to show the complex interests and ideas that need to be reflected and contemplated upon when deciding to genetically alter our species. A short description of background literature takes place first to show the ideas of major philosophers and bioethic figures to introduce these topics. This analysis will then continue with discussion from a religious point of view and the concerns that they have on these technologies. Next, there is a discussion regarding violation of consent, rights, and autonomy. A discussion of the potential consequential grounds of these enhancements on our species and what they could mean for our future takes ensues after this. At the end of this paper, there is a last discussion about the injustice and inequity that could form from these technologies becoming available to the public. These technologies could affect the future of our entire species and drastically shape our society, medicine, and science in ways we could never imagine.
ContributorsHinni, Danielle Nicole (Author) / McGregor, Joan (Thesis director) / Brian, Jennifer (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05