Matching Items (3)
Filtering by

Clear all filters

Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
134408-Thumbnail Image.png
Description
Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Using Chen's (2016) exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area, the computational time required to solve for the

Pseudo-steady state (PSS) flow is a dominant time-dependent flow regime during constant rate production from a closed reservoir. Using Chen's (2016) exact analytical solution for the PSS flow of a fully-penetrated fractured vertical well with finite conductivity in an elliptical drainage area, the computational time required to solve for the PSS constant b_D,PSS is greatly reduced. This constant is the inverse of the productivity index, J_D,PSS, which is often used in modern fracture design optimization. This paper correlates the PSS flow of a fully-penetrated fractured vertical well in triangular drainage areas to Chen's solution for an elliptical drainage area using shape factors. Numerical solutions for the PSS constant are created using COMSOL, which uses a 2D model of the fractured reservoir to output time and pressure data. For equivalent reservoir properties, the numerical data for the triangular reservoir yields a PSS constant that can be directly compared to the PSS constant obtained using Chen's solution. Lack of access to the Subsurface Flow Module of COMSOL greatly limited the number of simulations that could be run, thus more simulations would significantly improve the accuracy and applicability of the triangular shape factor by making it a function of the penetration ratio through nonlinear regression methods.
ContributorsLight, Christopher Ting-Yu (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135299-Thumbnail Image.png
Description
Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This

Essential to the field of petroleum engineering, well testing is done to determine the important physical characteristics of a reservoir. In the case of a constant production rate (as opposed to a constant pressure), the well pressure drop is a function of both time and the formation's boundary conditions. This pressure drop goes through several distinct stages before reaching steady state or semi-steady state production. This paper focuses on the analysis of a circular well with a closed outer boundary and details the derivation of a new approximation, intended for the transient stage, from an existing steady state solution. This new approximation is then compared to the numerical solution as well as an existing approximate solution. The new approximation is accurate with a maximum 10% margin of error well into the semi-steady state phase with that error decreasing significantly as the distance to the closed external boundary increases. More accurate over a longer period of time than the existing line source approximation, the relevance and applications of this new approximate solution deserve further exploration.
ContributorsKelso, Sean Andrew (Author) / Chen, Kangping (Thesis director) / Liao, Yabin (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05