Matching Items (13)
Filtering by

Clear all filters

133896-Thumbnail Image.png
Description
After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been

After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been prepared for the difficulty of learning sales. Sales get a bad rap and very often is the last thing that young entrepreneurs want to try, but the reality is that sales is oxygen to a company and a required skill for an entrepreneur. Due to this, I compiled all of my knowledge into an e-book for young entrepreneurs starting out to learn how to open up a conversation with a prospect all the way to closing them on the phone. Instead of starting from scratch like I did, college entrepreneurs can learn the bare basics of selling their own services, even if they are terrified of sales and what it entails. In this e-book, there are tips that I have learned to deal with my anxiety about sales such as taking the pressure off of yourself and prioritizing listening more than pitching. Instead of trying to teach sales expecting people to be natural sales people, this e-book takes the approach of helping entrepreneurs that are terrified of sales and show them how they can cope with this fear and still close a client. In the future, I hope young entrepreneurs will have access to more resources that handle this fear and make it much easier for them to learn it by themselves. This e-book is the first step.
ContributorsMead, Kevin Tyler (Author) / Sebold, Brent (Thesis director) / Kruse, Gabriel (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134385-Thumbnail Image.png
Description
The rising age of the Baby Boomer generation has made a significant impact on the workforce, leaving leadership gaps that Generation X is unable to fill. This leaves an opportunity for the Millennial generation to step up and use their strengths and skills to become stronger leaders of the business

The rising age of the Baby Boomer generation has made a significant impact on the workforce, leaving leadership gaps that Generation X is unable to fill. This leaves an opportunity for the Millennial generation to step up and use their strengths and skills to become stronger leaders of the business and sales industry.
To bridge the gap between the growing sales industry there is the ability to properly train Millennials so they are successful and stay within their roles longer. By attacking this problem from a university level by strengthening sales programs as well as having employers understand and respond to needs of the Millennial generation, this will create an overall successful Millennial salesperson that will stay with their employer long term.
Strengths and weaknesses of this generation are also important to understand. Millennials are known to be tech-savvy, open-minded, collaborative, and connected, resourceful networkers. They also carry weaknesses and stereotypes of being lazy, lacking communication skills, impatient, entitled, and demanding of feedback and work flexibility. From an employer, they expect a large salary as well as a good culture, manager feedback, a mentor, work-life integration, an employer with a social responsibility mindset, and a sense of purpose.
An analysis of 12 sales programs at various universities across the country helped to understand what is being taught and offered to students as well as commonalities and differences that make a strong sales program. Commonalities among these programs include, about 250+ students, high job placement, sales labs, hosting and competing in sales competitions, and a desire to expand and grow their programs. Unique aspects of various programs were partnerships with the sales industry, hosting fundraisers, student ambassadors for the sales program, CRM courses, and internships and competition requirements.
Primary research was conducted to understand various sales development programs from companies in the sales industry. The 12 companies that participated in this research were from Arizona State University’s Sales Advisory Board. These companies completed a survey that provided detailed information of their onboarding and training process as well as their opinions of Millennial employees.
From this research, recommendations were formed for employers,
• creating a collaborative and innovative culture
• A mentorship program
• work flexibility
• continuous learning
• sense of purpose
As for Arizona State’s Sales Program, recommendations include,
• a mentorship program between Sales Scholars and the Sales Advisory Board
• creating a sales lab
• implementing CRM curriculum in classes
• continued support from the Board and alumni of the sales program
ContributorsQuinn, Jacklyn Michelle (Author) / Montoya, Detra (Thesis director) / Dietrich, John (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134336-Thumbnail Image.png
Description
The millennial generation is quickly solidifying its place as the dominate generation within the workforce. As millennials transition through workplace hierarchy it is essential organizations understand how to properly develop incoming talent. This is especially important within sales as the opportunity cost for hiring and developing new sales professionals is

The millennial generation is quickly solidifying its place as the dominate generation within the workforce. As millennials transition through workplace hierarchy it is essential organizations understand how to properly develop incoming talent. This is especially important within sales as the opportunity cost for hiring and developing new sales professionals is much higher compared to other professions. Downward trends in millennial retention rates is also a strong contributing factor to the importance of understanding the millennial generation. This paper aims to identify key concepts and elements employers should incorporate into their sales training programs in order to better develop millennials entering sales roles. Through an analysis of each generation and sales training a clear framework will be identified to achieve this goal. Analyzing millennials unique strengths and weaknesses will provide the basis for the key areas employers need to focus on when designing their sales development programs. The framework identified is easily adaptable within any organizations as the concepts discussed can be universally applied.
ContributorsStensland, Zachary William (Author) / Montoya, Detra (Thesis director) / Schlacter, John (Committee member) / Department of Marketing (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133698-Thumbnail Image.png
Description
In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There

In online social networks the identities of users are concealed, often by design. This anonymity makes it possible for a single person to have multiple accounts and to engage in malicious activity such as defrauding a service providers, leveraging social influence, or hiding activities that would otherwise be detected. There are various methods for detecting whether two online users in a network are the same people in reality and the simplest way to utilize this information is to simply merge their identities and treat the two users as a single user. However, this then raises the issue of how we deal with these composite identities. To solve this problem, we introduce a mathematical abstraction for representing users and their identities as partitions on a set. We then define a similarity function, SIM, between two partitions, a set of properties that SIM must have, and a threshold that SIM must exceed for two users to be considered the same person. The main theoretical result of our work is a proof that for any given partition and similarity threshold, there is only a single unique way to merge the identities of similar users such that no two identities are similar. We also present two algorithms, COLLAPSE and SIM_MERGE, that merge the identities of users to find this unique set of identities. We prove that both algorithms execute in polynomial time and we also perform an experiment on dark web social network data from over 6000 users that demonstrates the runtime of SIM_MERGE.
ContributorsPolican, Andrew Dominic (Author) / Shakarian, Paulo (Thesis director) / Sen, Arunabha (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134946-Thumbnail Image.png
Description
This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further

This thesis project focused on malicious hacking community activities accessible through the I2P protocol. We visited 315 distinct I2P sites to identify those with malicious hacking content. We also wrote software to scrape and parse data from relevant I2P sites. The data was integrated into the CySIS databases for further analysis to contribute to the larger CySIS Lab Darkweb Cyber Threat Intelligence Mining research. We found that the I2P cryptonet was slow and had only a small amount of malicious hacking community activity. However, we also found evidence of a growing perception that Tor anonymity could be compromised. This work will contribute to understanding the malicious hacker community as some Tor users, seeking assured anonymity, transition to I2P.
ContributorsHutchins, James Keith (Author) / Shakarian, Paulo (Thesis director) / Ahn, Gail-Joon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will

Machine learning has a near infinite number of applications, of which the potential has yet to have been fully harnessed and realized. This thesis will outline two departments that machine learning can be utilized in, and demonstrate the execution of one methodology in each department. The first department that will be described is self-play in video games, where a neural model will be researched and described that will teach a computer to complete a level of Super Mario World (1990) on its own. The neural model in question was inspired by the academic paper “Evolving Neural Networks through Augmenting Topologies”, which was written by Kenneth O. Stanley and Risto Miikkulainen of University of Texas at Austin. The model that will actually be described is from YouTuber SethBling of the California Institute of Technology. The second department that will be described is cybersecurity, where an algorithm is described from the academic paper “Process Based Volatile Memory Forensics for Ransomware Detection”, written by Asad Arfeen, Muhammad Asim Khan, Obad Zafar, and Usama Ahsan. This algorithm utilizes Python and the Volatility framework to detect malicious software in an infected system.

ContributorsBallecer, Joshua (Author) / Yang, Yezhou (Thesis director) / Luo, Yiran (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

During October 2022, I contributed to the annual Cybersecurity Awareness Month (CSAM) program at Arizona State University (ASU). 4 cybersecurity domains were explored during the month: phishing, password hygiene, physical security, and social media security. The scope of my work involved designing and developing activities related to phishing and social

During October 2022, I contributed to the annual Cybersecurity Awareness Month (CSAM) program at Arizona State University (ASU). 4 cybersecurity domains were explored during the month: phishing, password hygiene, physical security, and social media security. The scope of my work involved designing and developing activities related to phishing and social media security. The deliverables included 8 emails for the ‘Spot the Phish’ activity, an educational flier on phishing indicators, discussion questions for The Tinder Swindler documentary, and a password security question guessing game. I also collected feedback from students and faculty who participated in ‘Spot the Phish’ and the security question game. Participants answered questions about the difficulty of the activities and how their cybersecurity knowledge improved. The security question game didn’t have much participation, so there wasn’t much information to gather from the feedback. The ‘Spot the Phish’ activity had over 50 feedback submissions. That data suggested that the ‘Spot the Phish’ activity improved participants’ confidence in identifying phishing emails. After reviewing the feedback and my own anecdotal experience conducting the activities, I looked into research regarding tools for cybersecurity education. Based on that research, I designed new activities to better inform students and faculty about phishing and social media security for 2023 CSAM.

ContributorsVenkatesh, Ramana (Author) / Meuth, Ryan (Thesis director) / Menees, Jodi (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

Fuzzing is currently a thriving research area in the cybersecurity field. This work begins by introducing code that brings partial replayability capabilities to AFL++ in an attempt to solve the challenge of the highly random nature of fuzzing that comes from the large amount of random mutations on input seeds.

Fuzzing is currently a thriving research area in the cybersecurity field. This work begins by introducing code that brings partial replayability capabilities to AFL++ in an attempt to solve the challenge of the highly random nature of fuzzing that comes from the large amount of random mutations on input seeds. The code addresses two of the three sources of nondeterminism described in this work. Furthermore, this work introduces Fuzzing Debugger (FDB), a highly configurable framework to facilitate the debugging of fuzzing by interfacing with GDB. Three debugging modes are described which attempt to tackle two use cases of FDB: (1) pinpointing nondeterminism in fuzz runs, therefore paving the way for replayable fuzz runs and (2) systematically finding preferable stopping points seed analysis.

ContributorsLiu, Denis (Author) / Bao, Tiffany (Thesis director) / Shoshitaishvili, Yan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
166188-Thumbnail Image.png
Description
Data breaches and software vulnerabilities are increasingly severe problems that incur both monetary and reputational costs for companies as well as societal impacts. While companies have clear monetary and legal incentives to mitigate risk of data breaches, companies have significantly less incentive to mitigate software product vulnerabilities, and their existing

Data breaches and software vulnerabilities are increasingly severe problems that incur both monetary and reputational costs for companies as well as societal impacts. While companies have clear monetary and legal incentives to mitigate risk of data breaches, companies have significantly less incentive to mitigate software product vulnerabilities, and their existing incentive is widely considered insufficient. In this thesis, I initially set out to perform a statistical analysis correlating company characteristics and behavior with the characteristics of the data breaches they suffer, as well as performing a metaanalysis of existing literature. While the attempted statistical analysis was hindered by lack of sufficiently comprehensive free company datasets, I have recorded my efforts in finding suitable databases. I have also performed an exploratory literature review of 15 papers in the field of improving cybersecurity, and identified four blockers to security addressed and three elements of solutions proposed by the papers, as well as derived insights from the distribution of these blockers and elements of solutions in the papers reviewed.
ContributorsMac, Anthony (Author) / Bazzi, Rida (Thesis director) / Shoshitaishvili, Yan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05