Matching Items (16)
Filtering by

Clear all filters

136339-Thumbnail Image.png
Description
The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs

The following is a report that will evaluate the microstructure of the nickel-based superalloy Hastelloy X and its relationship to mechanical properties in different load conditions. Hastelloy X is of interest to the company AORA because its strength and oxidation resistance at high temperatures is directly applicable to their needs in a hybrid concentrated solar module. The literature review shows that the microstructure will produce different carbides at various temperatures, which can be beneficial to the strength of the alloy. These precipitates are found along the grain boundaries and act as pins that limit dislocation flow, as well as grain boundary sliding, and improve the rupture strength of the material. Over time, harmful precipitates form which counteract the strengthening effect of the carbides and reduce rupture strength, leading to failure. A combination of indentation and microstructure mapping was used in an effort to link local mechanical behavior to microstructure variability. Electron backscatter diffraction (EBSD) and energy dispersive spectroscopy (EDS) were initially used as a means to characterize the microstructure prior to testing. Then, a series of room temperature Vickers hardness tests at 50 and 500 gram-force were used to evaluate the variation in the local response as a function of indentation size. The room temperature study concluded that both the hardness and standard deviation increased at lower loads, which is consistent with the grain size distribution seen in the microstructure scan. The material was then subjected to high temperature spherical indentation. Load-displacement curves were essential in evaluating the decrease in strength of the material with increasing temperature. Through linear regression of the unloading portion of the curve, the plastic deformation was determined and compared at different temperatures as a qualitative method to evaluate local strength.
ContributorsCelaya, Andrew Jose (Author) / Peralta, Pedro (Thesis director) / Solanki, Kiran (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136455-Thumbnail Image.png
Description
Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism

Although wind turbine bearings are designed to operate 18-20 years, in the recent years premature failure among these bearings has caused this life to reduce to as low as a few months to a year. One of the leading causes of premature failure called white structure flaking is a mechanism that was first cited in literature decades ago but not much is understood about it even today. The cause of this mode of failure results from the initiation of white etched cracks (WECs). In this report, different failure mechanisms, especially premature failure mechanisms that were tested and analyzed are demonstrated as a pathway to understanding this phenomenon. Through the use of various tribometers, samples were tested in diverse and extreme conditions in order to study the effect of these different operational conditions on the specimen. Analysis of the tested samples allowed for a comparison of the microstructure alterations in the tested samples to the field bearings affected by WSF.
ContributorsSharma, Aman (Author) / Foy, Joseph (Thesis director) / Adams, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
Description
The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence

The study of the mechanical behavior of nanocrystalline metals using microelectromechanical systems (MEMS) devices lies at the intersection of nanotechnology, mechanical engineering and material science. The extremely small grains that make up nanocrystalline metals lead to higher strength but lower ductility as compared to bulk metals. Effects of strain-rate dependence on the mechanical behavior of nanocrystalline metals are explored. Knowing the strain rate dependence of mechanical properties would enable optimization of material selection for different applications and lead to lighter structural components and enhanced sustainability.
ContributorsHall, Andrea Paulette (Author) / Rajagopalan, Jagannathan (Thesis director) / Liao, Yabin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
147589-Thumbnail Image.png
Description

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th grade learned about computer-aided design (CAD)<br/>and 3D printing through their

The purpose of this project is to assess how well today’s youth is able to learn new skills<br/>in the realm of engineering through online video-conferencing resources. Each semester of this<br/>last year, a class of students in both 3rd and 6th grade learned about computer-aided design (CAD)<br/>and 3D printing through their laptops at school. This was done by conducting online lessons of<br/>TinkerCAD via Zoom and Google Meet. TinkerCAD is a simple website that incorporates easy-to-learn skills and gives students an introduction to some of the basic operations that are used in<br/>everyday CAD endeavors. In each lesson, the students would learn new skills by creating<br/>increasingly difficult objects that would test both their ability to learn new skills and their overall<br/>enjoyment with the subject matter. The findings of this project reflect that students are able to<br/>quickly learn and retain new information relating to CAD. The group of 6th graders was able to<br/>learn much faster, which was expected, but the class of 3rd graders still maintained the<br/>knowledge gained from previous lessons and were able to construct increasingly complicated<br/>objects without much struggle. Overall, the students in both classes enjoyed the lessons and did<br/>not find them too difficult, despite the online environment that we were required to use. Some<br/>students found the material more interesting than others, but in general, the students found it<br/>enjoyable to learn about a new skill that has significant real-world applications

ContributorsWerner, Matthew (Author) / Song, Kenan (Thesis director) / Lin, Elva (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148273-Thumbnail Image.png
Description

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has

Titanium has been and continues to be a popular metal across any form of manufacturing and production because of its extremely favorable properties. In important circumstances, it finds itself outclassing many metals by being lighter and less dense than comparably strong metals like steel. Relative to other metals it has a noteworthy corrosion resistance as it is stable when it oxidizes, and due to the inert nature of the metal, it is famously hypoallergenic and as a result used in a great deal of aviation and medical fields, including being used to produce replacement joints, with the notable limitation of the material being its cost of manufacturing. Among the variants of the metal and alloys used, Ti6Al4V alloy is famous for being the most reliable and popular combination for electron beam manufacturing(EBM) as a method of additive manufacturing. <br/>Developed by the Swedish Arcam, AB, EBM is one of the more recent methods of additive manufacturing, and is notable for its lack of waste by combining most of the material into the intended product due to its precision. This method, much like the titanium it is used to print in this case, is limited mostly by time and value of production. <br/>For this thesis, nine different simulations of a dogbone model were generated and analyzed in Ansys APDL using finite element analysis at various temperature and print conditions to create a theoretical model based on experimentally produced values.

ContributorsKauffman, Jordan Michael (Author) / Ladani, Leila (Thesis director) / Razmi, Jafar (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change geometry at an even more rapid rate. This project consists

Due to the Human foot constantly growing at a rapid pace, typical gel and mold orthotics quickly become ineffective as they no longer fit the foot properly. In pediatric patients, this situation is even more pronounced as their feet change geometry at an even more rapid rate. This project consists of designing an adjustable sizing Pediatric Orthotic for use in children as well as adult patient’s shoes to provide better foot support than not using one at all, or for that matter an inappropriately sized orthotic. This idea incorporates multiple air bladders that can hold pressure and adjust shape as is necessary to best accommodate the patient’s foot geometry to reduce the deformation and average stress presented within the foot. Results will be obtained by running simulation models of these phenomena in MATLAB as well as Ansys softwares. From the results, by incorporating two bladders into the middle arch of a ‘control’ patient who has a perfectly symmetric arch, maximum deformation of the foot was reduced by approximately 17%. Under this same scenario, average stress in the foot dropped by approximately 13%. In a more abnormal ‘experimental’ case, of a largely asymmetric arch, it was found that max deformation and average stress in the foot dropped by 21% and 17% respectively. This leads to the conclusion that incorporating this design will indeed lower the stress and fulfill the requirement of an orthotic while also being a removable and adjustable air bladder to fulfill the adjustability constraint.
ContributorsNaqvi, Abbas Ali (Author) / Benson, David (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
ContributorsDorman, Kyle Joseph (Author) / Kosaraju, Srinivas (Thesis director) / Bacalzo, Dean (Committee member) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131374-Thumbnail Image.png
Description
This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used

This paper investigates Surface Mechanical Attrition Treatment (SMAT) and the influence of treatment temperature and initial sample surface finish on the corrosion resistance of 7075-T651 aluminum alloy. Ambient SMAT was performed on AA7075 samples polished to 80-grit initial surface roughness. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests were used to characterize the corrosion behavior of samples before and after SMAT. Electrochemical tests indicated an improved corrosion resistance after application of SMAT process. The observed improvements in corrosion properties are potentially due to microstructural changes in the material surface induced by SMAT which encouraged the formation of a passive oxide layer. Further testing and research are required to understand the corrosion related effects of cryogenic SMAT and initial-surface finish as the COVID-19 pandemic inhibited experimentation plans.
ContributorsDeorio, Jordan Anthony (Author) / Solanki, Kiran (Thesis director) / Rajagopalan, Jagannathan (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in

Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in active use instead of needing downtime for inspection.
The two general categories of structural health monitoring (SHM) systems include passive and active monitoring. Active SHM systems utilize an input of energy to monitor the health of a structure (such as sound waves in ultrasonics), while passive systems do not. As such, passive SHM tends to be more desirable. A system could be permanently fixed to a critical location, passively accepting signals until it records a damage event, then localize and characterize the damage. This is the goal of acoustic emissions testing.
When certain types of damage occur, such as matrix cracking or delamination in composites, the corresponding release of energy creates sound waves, or acoustic emissions, that propagate through the material. Audio sensors fixed to the surface can pick up data from both the time and frequency domains of the wave. With proper data analysis, a time of arrival (TOA) can be calculated for each sensor allowing for localization of the damage event. The frequency data can be used to characterize the damage.
In traditional acoustic emissions testing, the TOA combined with wave velocity and information about signal attenuation in the material is used to localize events. However, in instances of complex geometries or anisotropic materials (such as carbon fibre composites), velocity and attenuation can vary wildly based on the direction of interest. In these cases, localization can be based off of the time of arrival distances for each sensor pair. This technique is called Delta T mapping, and is the main focus of this study.
ContributorsBriggs, Nathaniel (Author) / Chattopadhyay, Aditi (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Skinner, Travis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05