Matching Items (390)
ContributorsWard, Geoffrey Harris (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-18
Description
The omega-3 fatty acids in fatty fish and fish oil, eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), have been associated with a reduction in risk for cardiovascular disease. Blood type is a known contributor to risk for cardiovascular events. This study evaluated the effect of fish oil supplements on cardiovascular

The omega-3 fatty acids in fatty fish and fish oil, eicosapentanoic acid (EPA) and docosahexanoic acid (DHA), have been associated with a reduction in risk for cardiovascular disease. Blood type is a known contributor to risk for cardiovascular events. This study evaluated the effect of fish oil supplements on cardiovascular risk markers in adults with blood types A or O. An 8-week parallel-arm, randomized, double-blind trial was conducted in healthy adult men and women with either blood type A (BTA) or blood type O (BTO). Participants were randomized to receive fish oil supplements (n=10 [3 BTA/7 BTO]; 2 g [containing 1.2 g EPA+DHA]/d) or a coconut oil supplement (n=7 [3 BTA/4 BTO]; 2 g/d). Markers that were examined included total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), high-sensitivity C-reactive protein (hsCRP), and hemoglobin A1C (HbA1C). Results indicated that the percent change in LDL cholesterol was significantly greater in the coconut oil group vs the fish oil group (-14.8±12.2% vs +2.8±18.9% respectively, p=0.048). There were no other significant differences between treatment groups, or between blood types A and O, for the other cardiovascular risk markers. Further research with a larger and more diverse sample may yield a more conclusive result.
ContributorsHerring, Dana (Author) / Johnston, Carol (Thesis advisor) / Vega-Lopez, Sonia (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2014
150940-Thumbnail Image.png
Description
ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it is a challenge to identify the most cost-effective variety of

ABSTRACT Leadership in Energy and Environmental Design (LEED) is a non-governmental organization of U.S. Green Building Council (USGBC) which promotes a sustainable built environment with its rating systems. One of the building segments which it considers is healthcare, where it is a challenge to identify the most cost-effective variety of complex equipments, to meet the demand for 24/7 health care and diagnosis, and implement various energy efficient strategies in inpatient hospitals. According to their “End Use Monitoring” study, Hospital Energy Alliances (HEA), an initiative of U.S. Department of Energy (DOE), reducing plug load reduces hospital energy consumption. The aim of this thesis is to investigate the extent to which realistic changes to the building envelope, together with HVAC and operation schedules would allow LEED credits to be earned in the DOE–hospital prototype. The scope of this research is to specifically investigate the inpatient block where patient stays longer. However, to obtain LEED credits the percentage cost saving should be considered along with the end use monitoring. Several steps have been taken to identify the optimal set of the end use results by adopting the Whole Building Energy Simulation option of the LEED Energy & Atmosphere (EA) pre– requisite 2: Minimum Energy Performance. The initial step includes evaluating certain LEED criteria consistent with ASHRAE Standard 90.1–2007 with the constraint that hospital prototype is to be upgraded from Standard 2004 to Standard 2007. The simulation method stipulates energy conservation measures as well as utility costing to enhance the LEED credits. A series of simulations with different values of Light Power Density, Sizing Factors, Chiller Coefficient of Performance, Boiler Efficiency, Plug Loads and utility cost were run for a variety of end uses with the extreme climatic condition of Phoenix. These assessments are then compared and used as a framework for a proposed interactive design decision approach. As a result, a total of 19.4% energy savings and 20% utility cost savings were achieved by the building simulation tool, which refer to 5 and 7 LEED credits respectively. The study develops a proper framework for future evaluations intended to achieve more LEED points.
ContributorsHaque, Sadia Khandaker (Author) / Reddy, T A (Thesis advisor) / Bryan, Harvey J. (Committee member) / Addison, Marlin S. (Committee member) / Arizona State University (Publisher)
Created2012
ContributorsBolari, John (Performer) / ASU Library. Music Library (Publisher)
Created2018-10-04
ContributorsOftedahl, Paul (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-29
ContributorsMarshall, Kimberly (Performer) / Meszler, Alexander (Performer) / Yatso, Toby (Narrator) / ASU Library. Music Library (Publisher)
Created2018-09-16
ContributorsTaylor, Karen Stephens (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-21
ContributorsCramer, Craig (Performer) / ASU Library. Music Library (Publisher)
Created1997-02-16
ContributorsMarshall, Kimberly (Performer) / ASU Library. Music Library (Publisher)
Created2019-03-17
ContributorsCampbell, Jeffrey (Performer) / ASU Library. Music Library (Publisher)
Created2005-10-23