Matching Items (6)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF)

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
ContributorsKrantsevich, Nikolay (Author) / Hahn, P Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Lan, Shiwei (Committee member) / He, Jingyu (Committee member) / Arizona State University (Publisher)
Created2023
187808-Thumbnail Image.png
Description
This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth

This dissertation covers several topics in machine learning and causal inference. First, the question of “feature selection,” a common byproduct of regularized machine learning methods, is investigated theoretically in the context of treatment effect estimation. This involves a detailed review and extension of frameworks for estimating causal effects and in-depth theoretical study. Next, various computational approaches to estimating causal effects with machine learning methods are compared with these theoretical desiderata in mind. Several improvements to current methods for causal machine learning are identified and compelling angles for further study are pinpointed. Finally, a common method used for “explaining” predictions of machine learning algorithms, SHAP, is evaluated critically through a statistical lens.
ContributorsHerren, Andrew (Author) / Hahn, P Richard (Thesis advisor) / Kao, Ming-Hung (Committee member) / Lopes, Hedibert (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2023
187395-Thumbnail Image.png
Description
This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of

This dissertation develops versatile modeling tools to estimate causal effects when conditional unconfoundedness is not immediately satisfied. Chapter 2 provides a brief overview ofcommon techniques in causal inference, with a focus on models relevant to the data explored in later chapters. The rest of the dissertation focuses on the development of novel “reduced form” models which are designed to assess the particular challenges of different datasets. Chapter 3 explores the question of whether or not forecasts of bankruptcy cause bankruptcy. The question arises from the observation that companies issued going concern opinions were more likely to go bankrupt in the following year, leading people to speculate that the opinions themselves caused the bankruptcy via a “self-fulfilling prophecy”. A Bayesian machine learning sensitivity analysis is developed to answer this question. In exchange for additional flexibility and fewer assumptions, this approach loses point identification of causal effects and thus a sensitivity analysis is developed to study a wide range of plausible scenarios of the causal effect of going concern opinions on bankruptcy. Reported in the simulations are different performance metrics of the model in comparison with other popular methods and a robust analysis of the sensitivity of the model to mis-specification. Results on empirical data indicate that forecasts of bankruptcies likely do have a small causal effect. Chapter 4 studies the effects of vaccination on COVID-19 mortality at the state level in the United States. The dynamic nature of the pandemic complicates more straightforward regression adjustments and invalidates many alternative models. The chapter comments on the limitations of mechanistic approaches as well as traditional statistical methods to epidemiological data. Instead, a state space model is developed that allows the study of the ever-changing dynamics of the pandemic’s progression. In the first stage, the model decomposes the observed mortality data into component surges, and later uses this information in a semi-parametric regression model for causal analysis. Results are investigated thoroughly for empirical justification and stress-tested in simulated settings.
ContributorsPapakostas, Demetrios (Author) / Hahn, Paul (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Kao, Ming-Hung (Committee member) / Lan, Shiwei (Committee member) / Arizona State University (Publisher)
Created2023
191496-Thumbnail Image.png
Description
This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART

This dissertation centers on Bayesian Additive Regression Trees (BART) and Accelerated BART (XBART) and presents a series of models that tackle extrapolation, classification, and causal inference challenges. To improve extrapolation in tree-based models, I propose a method called local Gaussian Process (GP) that combines Gaussian process regression with trained BART trees. This allows for extrapolation based on the most relevant data points and covariate variables determined by the trees' structure. The local GP technique is extended to the Bayesian causal forest (BCF) models to address the positivity violation issue in causal inference. Additionally, I introduce the LongBet model to estimate time-varying, heterogeneous treatment effects in panel data. Furthermore, I present a Poisson-based model, with a modified likelihood for XBART for the multi-class classification problem.
ContributorsWang, Meijia (Author) / Hahn, Paul (Thesis advisor) / He, Jingyu (Committee member) / Lan, Shiwei (Committee member) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Arizona State University (Publisher)
Created2024
157571-Thumbnail Image.png
Description
Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development.

Breeding seeds to include desirable traits (increased yield, drought/temperature resistance, etc.) is a growing and important method of establishing food security. However, besides breeder intuition, few decision-making tools exist that can provide the breeders with credible evidence to make decisions on which seeds to progress to further stages of development. This thesis attempts to create a chance-constrained knapsack optimization model, which the breeder can use to make better decisions about seed progression and help reduce the levels of risk in their selections. The model’s objective is to select seed varieties out of a larger pool of varieties and maximize the average yield of the “knapsack” based on meeting some risk criteria. Two models are created for different cases. First is the risk reduction model which seeks to reduce the risk of getting a bad yield but still maximize the total yield. The second model considers the possibility of adverse environmental effects and seeks to mitigate the negative effects it could have on the total yield. In practice, breeders can use these models to better quantify uncertainty in selecting seed varieties
ContributorsOzcan, Ozkan Meric (Author) / Armbruster, Dieter (Thesis advisor) / Gel, Esma (Thesis advisor) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2019