Matching Items (12)
Filtering by

Clear all filters

149829-Thumbnail Image.png
Description
Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research,

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.
ContributorsKhan, M Nadeem Shafi (Author) / Phelan, Patrick E (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Farin, Gerald (Committee member) / Roberts, Chell (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
154115-Thumbnail Image.png
Description
Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.



First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.



The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.



The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.
ContributorsSaleh, Moein (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Runger, George C. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2015
156215-Thumbnail Image.png
Description
Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to

Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of portfolios on many different criteria and allows decision makers (DM) to bring their experience and insight to the table when making a decision is discussed. A binary fractional integer program provides additional choices by optimizing portfolios on cost-benefit ratios over multiple time periods is also presented. By combining this framework with an `elimination by aspects' model of decision making, DMs evaluate portfolios on various objectives and ensure the selection of a portfolio most in line with their goals. By presenting a modeling framework to easily model a large number of project inter-dependencies and an evolutionary algorithm that is intelligently guided in the search for attractive portfolios by a beam search heuristic, practitioners are given a ready recipe to solve big problem instances to generate attractive project portfolios for their organizations. Finally, this dissertation attempts to address the problem of risk and uncertainty in project portfolio selection. After exploring the selection of portfolios based on trade-offs between a primary benefit and a primary cost, the third important dimension of uncertainty of outcome and the risk a decision maker is willing to take on in their quest to select the best portfolio for their organization is examined.
ContributorsSampath, Siddhartha (Author) / Gel, Esma (Thesis advisor) / Fowler, Jown W (Thesis advisor) / Kempf, Karl G. (Committee member) / Pan, Rong (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2018
155983-Thumbnail Image.png
Description
This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective

This research develops heuristics to manage both mandatory and optional network capacity reductions to better serve the network flows. The main application discussed relates to transportation networks, and flow cost relates to travel cost of users of the network. Temporary mandatory capacity reductions are required by maintenance activities. The objective of managing maintenance activities and the attendant temporary network capacity reductions is to schedule the required segment closures so that all maintenance work can be completed on time, and the total flow cost over the maintenance period is minimized for different types of flows. The goal of optional network capacity reduction is to selectively reduce the capacity of some links to improve the overall efficiency of user-optimized flows, where each traveler takes the route that minimizes the traveler’s trip cost. In this dissertation, both managing mandatory and optional network capacity reductions are addressed with the consideration of network-wide flow diversions due to changed link capacities.

This research first investigates the maintenance scheduling in transportation networks with service vehicles (e.g., truck fleets and passenger transport fleets), where these vehicles are assumed to take the system-optimized routes that minimize the total travel cost of the fleet. This problem is solved with the randomized fixed-and-optimize heuristic developed. This research also investigates the maintenance scheduling in networks with multi-modal traffic that consists of (1) regular human-driven cars with user-optimized routing and (2) self-driving vehicles with system-optimized routing. An iterative mixed flow assignment algorithm is developed to obtain the multi-modal traffic assignment resulting from a maintenance schedule. The genetic algorithm with multi-point crossover is applied to obtain a good schedule.

Based on the Braess’ paradox that removing some links may alleviate the congestion of user-optimized flows, this research generalizes the Braess’ paradox to reduce the capacity of selected links to improve the efficiency of the resultant user-optimized flows. A heuristic is developed to identify links to reduce capacity, and the corresponding capacity reduction amounts, to get more efficient total flows. Experiments on real networks demonstrate the generalized Braess’ paradox exists in reality, and the heuristic developed solves real-world test cases even when commercial solvers fail.
ContributorsPeng, Dening (Author) / Mirchandani, Pitu B. (Thesis advisor) / Sefair, Jorge (Committee member) / Wu, Teresa (Committee member) / Zhou, Xuesong (Committee member) / Arizona State University (Publisher)
Created2017
157244-Thumbnail Image.png
Description
I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection

I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection point of all the information

captured by SNs. SNs have limited transmission range and hence signals are transmitted

from the SNs to the BS through multi-hop routing. As a result, the WSN

is said to be connected if there exists a path for from each SN to the BS through

which signals can be hopped. The communication range of each node is modeled

with a disk of known radius such that two nodes are said to communicate if their

communication disks overlap. The goal is to locate a given number of RNs anywhere

in the continuous space of the WSN to maximize the number of SNs connected (i.e.,

maximize the network connectivity). To solve this problem, I propose an integer

programming based approach that iteratively approximates the Euclidean distance

needed to enforce sensor communication. This is achieved through a cutting-plane

approach with a polynomial-time separation algorithm that identies distance violations.

I illustrate the use of my algorithm on large-scale instances of up to 75 nodes

which can be solved in less than 60 minutes. The proposed method shows solutions

times many times faster than an alternative nonlinear formulation.
ContributorsSurendran, Vishal Sairam Jaitra (Author) / Sefair, Jorge (Thesis advisor) / Mirchandani, Pitu (Committee member) / Grubesic, Anthony (Committee member) / Arizona State University (Publisher)
Created2019
134111-Thumbnail Image.png
Description
Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests

Every year, millions of guests visit theme parks internationally. Within that massive population, accidents and emergencies are bound to occur. Choosing the correct location for emergency responders inside of the park could mean the difference between life and death. In an effort to provide the utmost safety for the guests of a park, it is important to make the best decision when selecting the location for emergency response crews. A theme park is different from a regular residential or commercial area because the crowds and shows block certain routes, and they change throughout the day. We propose an optimization model that selects staging locations for emergency medical responders in a theme park to maximize the number of responses that can occur within a pre-specified time. The staging areas are selected from a candidate set of restricted access locations where the responders can store their equipment. Our solution approach considers all routes to access any park location, including areas that are unavailable to a regular guest. Theme parks are a highly dynamic environment. Because special events occurring in the park at certain hours (e.g., parades) might impact the responders' travel times, our model's decisions also include the time dimension in the location and re-location of the responders. Our solution provides the optimal location of the responders for each time partition, including backup responders. When an optimal solution is found, the model is also designed to consider alternate optimal solutions that provide a more balanced workload for the crews.
ContributorsLivingston, Noah Russell (Author) / Sefair, Jorge (Thesis director) / Askin, Ronald (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
154536-Thumbnail Image.png
Description
Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite

Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite their focus on relatively esoteric aspects of the problem, and have limited potential for practical use due to computational requirements. This dissertation attempts to address various modeling and computational issues, introducing realistic choice-based demand revenue management models. In particular, this work introduces two optimization formulations alongside a choice-based demand modeling framework, improving on the methods that choice-based revenue management literature has created to date, by providing sensible models for airline implementation.

The first model offers an alternative formulation to the traditional choice-based revenue management problem presented in the literature, and provides substantial gains in expected revenue while limiting the problem’s computational complexity. Making assumptions on passenger demand, the Choice-based Mixed Integer Program (CMIP) provides a significantly more compact formulation when compared to other choice-based revenue management models, and consistently outperforms previous models.

Despite the prevalence of choice-based revenue management models in literature, the assumptions made on purchasing behavior inhibit researchers to create models that properly reflect passenger sensitivities to various ticket attributes, such as price, number of stops, and flexibility options. This dissertation introduces a general framework for airline choice-based demand modeling that takes into account various ticket attributes in addition to price, providing a framework for revenue management models to relate airline companies’ product design strategies to the practice of revenue management through decisions on ticket availability and price.

Finally, this dissertation introduces a mixed integer non-linear programming formulation for airline revenue management that accommodates the possibility of simultaneously setting prices and availabilities on a network. Traditional revenue management models primarily focus on availability, only, forcing secondary models to optimize prices. The Price-dynamic Choice-based Mixed Integer Program (PCMIP) eliminates this two-step process, aligning passenger purchase behavior with revenue management policies, and is shown to outperform previously developed models, providing a new frontier of research in airline revenue management.
ContributorsClough, Michael C (Author) / Gel, Esma (Thesis advisor) / Jacobs, Timothy (Thesis advisor) / Askin, Ronald (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2016
187468-Thumbnail Image.png
Description
In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed

In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed vehicular traffic, having various levels of autonomy, through traffic intersections. Using real-time traffic control algorithms MIDAS minimizes wait times, congestion, and travel times on existing roadways. For traffic engineers, efficient control of complicated traffic movements used at diamond interchanges (DI), which interface streets with freeways, is challenging for normal human driven vehicular traffic, let alone for communicationally-connected vehicles (CVs) due to stochastic demand and uncertainties. This dissertation first develops a proactive traffic control algorithm, MIDAS, using forward-recursion dynamic programming (DP), for scheduling large set of traffic movements of non-connected vehicles and CVs at the DIs, over a finite-time horizon. MIDAS captures measurements from fixed detectors and captures Lagrangian measurements from CVs, to estimate link travel times, arrival times and turning movements. Simulation study shows MIDAS’ outperforms (a) a current optimal state-of-art optimal fixed-cycle time control scheme, and (b) a state-of-art traffic adaptive cycle-free scheme. Subsequently, this dissertation addresses the challenges of improving the road capacity by platooning fully autonomous vehicles (AVs), resulting in smaller headways and greater road utilization. With the MIDAS AI (Autonomous Intersection) control, an effective platooning strategy is developed, and optimal release sequence of AVs is determined using a new forward-recursive DP that minimizes the time-loss delays of AVs. MIDAS AI evaluates the DP decisions every second and communicates optimal actions to the AVs. Although MIDAS AI’s exact DP achieves optimal solution in almost real-time compared to other exact algorithms, it suffers from scalability. To address this challenge, the dissertation then develops MIDAS RAIC (Reinforced Autonomous Intersection Control), a deep reinforcement learning based real-time dynamic traffic control system for AVs at an intersection. Simulation results show the proposed deep Q-learning architecture trains MIDAS RAIC to learn a near-optimal policy that minimizes the total cumulative time loss delay and performs nearly as well as the MIDAS AI.
ContributorsPotluri, Viswanath (Author) / Mirchandani, Pitu (Thesis advisor) / Ju, Feng (Committee member) / Zhou, Xuesong (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2023
187469-Thumbnail Image.png
Description
Assembly lines are low-cost production systems that manufacture similar finished units in large quantities. Manufacturers utilize mixed-model assembly lines to produce customized items that are not identical but share some general features in response to consumer needs. To maintain efficiency, the aim is to find the best feasible option to

Assembly lines are low-cost production systems that manufacture similar finished units in large quantities. Manufacturers utilize mixed-model assembly lines to produce customized items that are not identical but share some general features in response to consumer needs. To maintain efficiency, the aim is to find the best feasible option to balance the lines efficiently; allocating each task to a workstation to satisfy all restrictions and fulfill all operational requirements in such a way that the line has the highest performance and maximum throughput. The work to be done at each workstation and line depends on the precise product configuration and is not constant across all models. This research seeks to enhance the subject of assembly line balancing by establishing a model for creating the most efficient assembly system. Several realistic characteristics are included into efficient optimization techniques and mathematical models to provide a more comprehensive model for building assembly systems. This involves analyzing the learning growth by task, employing parallel line designs, and configuring mixed models structure under particular constraints and criteria. This dissertation covers a gap in the literature by utilizing some exact and approximation modeling approaches. These methods are based on mathematical programming techniques, including integer and mixed integer models and heuristics. In this dissertation, heuristic approximations are employed to address problem-solving challenges caused by the problem's combinatorial complexity. This study proposes a model that considers learning curve effects and dynamic demand. This is exemplified in instances of a new assembly line, new employees, introducing new products or simply implementing engineering change orders. To achieve a cost-based optimal solution, an integer mathematical formulation is proposed to minimize the production line's total cost under the impact of learning and demand fulfillment. The research further creates approaches to obtain a comprehensive model in the case of single and mixed models for parallel lines systems. Optimization models and heuristics are developed under various aspects, such as cycle times by line and tooling considerations. Numerous extensions are explored effectively to analyze the cost impact under certain constraints and implications. The implementation results demonstrate that the proposed models and heuristics provide valuable insights.
ContributorsAlhomaidi, Esam (Author) / Askin, Ronald G (Thesis advisor) / Yan, Hao (Committee member) / Iquebal, Ashif (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2023
171695-Thumbnail Image.png
Description
The stable and efficient operation of the transmission network is fundamental to the power system’s ability to deliver electricity reliably and cheaply. As average temperatures continue to rise, the ability of the transmission network to meet demand is diminished. Higher temperatures lead to congestion by reducing thermal limits

The stable and efficient operation of the transmission network is fundamental to the power system’s ability to deliver electricity reliably and cheaply. As average temperatures continue to rise, the ability of the transmission network to meet demand is diminished. Higher temperatures lead to congestion by reducing thermal limits of lines while simultaneously reducing generation potential. Furthermore, they contribute to the growing frequency and ferocity of devasting weather events. Due to prohibitive costs and limited real estate for building new lines, it is necessary to consider flexible investment options (e.g., transmission switching, capacity expansion, etc.) to improve the functionality and efficiency of the grid. Increased flexibility, however, requires many discrete choices, rendering fully accurate models intractable. This dissertation derives several classes of structural valid inequalities and employs them to accelerate the solution process for each of the proposed expansion planning problems. The valid inequalities leverage the variability of the cumulative capacity-reactance products of parallel simple paths in networks with flexible topology, such as those found in transmission expansion planning problems. Ongoing changes to the climate and weather will have vastly differing impacts a regional and local scale, yet these effects are difficult to predict. This dissertation models the long-term and short-term uncertainty of rising temperatures and severe weather events on transmission network components in both stochastic and robust mixed-integer linear programming frameworks. It develops a novel test case constructed from publicly available data on the Arizona transmission network. The models and test case are used to test the impacts of climate and weather on regional expansion decisions.
ContributorsSkolfield, Joshua Kyle (Author) / Escobedo, Adolfo R (Thesis advisor) / Sefair, Jorge (Committee member) / Mirchandani, Pitu (Committee member) / Hedman, Mojdeh (Committee member) / Arizona State University (Publisher)
Created2022