Matching Items (16)
Filtering by

Clear all filters

152033-Thumbnail Image.png
Description
The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.
ContributorsHaghnevis, Moeed (Author) / Askin, Ronald G. (Thesis advisor) / Armbruster, Dieter (Thesis advisor) / Mirchandani, Pitu (Committee member) / Wu, Tong (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
153348-Thumbnail Image.png
Description
This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but

This research develops heuristics for scheduling electric power production amid uncertainty. Reliability is becoming more difficult to manage due to growing uncertainty from renewable resources. This challenge is compounded by the risk of resource outages, which can occur any time and without warning. Stochastic optimization is a promising tool but remains computationally intractable for large systems. The models used in industry instead schedule for the forecast and withhold generation reserve for scenario response, but they are blind to how this reserve may be constrained by network congestion. This dissertation investigates more effective heuristics to improve economics and reliability in power systems where congestion is a concern.

Two general approaches are developed. Both approximate the effects of recourse decisions without actually solving a stochastic model. The first approach procures more reserve whenever approximate recourse policies stress the transmission network. The second approach procures reserve at prime locations by generalizing the existing practice of reserve disqualification. The latter approach is applied for feasibility and is later extended to limit scenario costs. Testing demonstrates expected cost improvements around 0.5%-1.0% for the IEEE 73-bus test case, which can translate to millions of dollars per year even for modest systems. The heuristics developed in this dissertation perform somewhere between established deterministic and stochastic models: providing an economic benefit over current practices without substantially increasing computational times.
ContributorsLyon, Joshua Daniel (Author) / Zhang, Muhong (Thesis advisor) / Hedman, Kory W (Thesis advisor) / Askin, Ronald G. (Committee member) / Mirchandani, Pitu (Committee member) / Arizona State University (Publisher)
Created2015
149829-Thumbnail Image.png
Description
Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research,

Mostly, manufacturing tolerance charts are used these days for manufacturing tolerance transfer but these have the limitation of being one dimensional only. Some research has been undertaken for the three dimensional geometric tolerances but it is too theoretical and yet to be ready for operator level usage. In this research, a new three dimensional model for tolerance transfer in manufacturing process planning is presented that is user friendly in the sense that it is built upon the Coordinate Measuring Machine (CMM) readings that are readily available in any decent manufacturing facility. This model can take care of datum reference change between non orthogonal datums (squeezed datums), non-linearly oriented datums (twisted datums) etc. Graph theoretic approach based upon ACIS, C++ and MFC is laid out to facilitate its implementation for automation of the model. A totally new approach to determining dimensions and tolerances for the manufacturing process plan is also presented. Secondly, a new statistical model for the statistical tolerance analysis based upon joint probability distribution of the trivariate normal distributed variables is presented. 4-D probability Maps have been developed in which the probability value of a point in space is represented by the size of the marker and the associated color. Points inside the part map represent the pass percentage for parts manufactured. The effect of refinement with form and orientation tolerance is highlighted by calculating the change in pass percentage with the pass percentage for size tolerance only. Delaunay triangulation and ray tracing algorithms have been used to automate the process of identifying the points inside and outside the part map. Proof of concept software has been implemented to demonstrate this model and to determine pass percentages for various cases. The model is further extended to assemblies by employing convolution algorithms on two trivariate statistical distributions to arrive at the statistical distribution of the assembly. Map generated by using Minkowski Sum techniques on the individual part maps is superimposed on the probability point cloud resulting from convolution. Delaunay triangulation and ray tracing algorithms are employed to determine the assembleability percentages for the assembly.
ContributorsKhan, M Nadeem Shafi (Author) / Phelan, Patrick E (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Farin, Gerald (Committee member) / Roberts, Chell (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
154115-Thumbnail Image.png
Description
Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.



First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.



The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.



The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.
ContributorsSaleh, Moein (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Runger, George C. (Committee member) / Kao, Ming-Hung (Committee member) / Arizona State University (Publisher)
Created2015
156345-Thumbnail Image.png
Description
The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in

The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in the network instead of the traditional binary ON/OFF pumps. Potentially, VSPs save up to 90% of annual energy cost compared to the binary pump. The control problem has been tackled in the literature as “Pump Scheduling Optimization” (PSO) with a main focus on the cost minimization. Nonetheless, engineering literature is mostly concerned with the problem of understanding “healthy working conditions” (e.g., leakages, breakages) for a water infrastructure rather than the costs. This is very critical because if we operate a network under stress, it may satisfy the demand at present but will likely hinder network functionality in the future.

This research addresses the problem of analyzing working conditions of large water systems by means of a detailed hydraulic simulation model (e.g., EPANet) to gain insights into feasibility with respect to pressure, tank level, etc. This work presents a new framework called Feasible Set Approximation – Probabilistic Branch and Bound (FSA-PBnB) for the definition and determination of feasible solutions in terms of pumps regulation. We propose the concept of feasibility distance, which is measured as the distance of the current solution from the feasibility frontier to estimate the distribution of the feasibility values across the solution space. Based on this estimate, pruning the infeasible regions and maintaining the feasible regions are proposed to identify the desired feasible solutions. We test the proposed algorithm with both theoretical and real water networks. The results demonstrate that FSA-PBnB has the capability to identify the feasibility profile in an efficient way. Additionally, with the feasibility distance, we can understand the quality of sub-region in terms of feasibility.

The present work provides a basic feasibility determination framework on the low dimension problems. When FSA-PBnB extends to large scale constraint optimization problems, a more intelligent sampling method may be developed to further reduce the computational effort.
ContributorsTsai, Yi-An (Author) / Pedrielli, Giulia (Thesis advisor) / Mirchandani, Pitu (Committee member) / Mascaro, Giuseppe (Committee member) / Zabinsky, Zelda (Committee member) / Candelieri, Antonio (Committee member) / Arizona State University (Publisher)
Created2018
157244-Thumbnail Image.png
Description
I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection

I study the problem of locating Relay nodes (RN) to improve the connectivity of a set

of already deployed sensor nodes (SN) in a Wireless Sensor Network (WSN). This is

known as the Relay Node Placement Problem (RNPP). In this problem, one or more

nodes called Base Stations (BS) serve as the collection point of all the information

captured by SNs. SNs have limited transmission range and hence signals are transmitted

from the SNs to the BS through multi-hop routing. As a result, the WSN

is said to be connected if there exists a path for from each SN to the BS through

which signals can be hopped. The communication range of each node is modeled

with a disk of known radius such that two nodes are said to communicate if their

communication disks overlap. The goal is to locate a given number of RNs anywhere

in the continuous space of the WSN to maximize the number of SNs connected (i.e.,

maximize the network connectivity). To solve this problem, I propose an integer

programming based approach that iteratively approximates the Euclidean distance

needed to enforce sensor communication. This is achieved through a cutting-plane

approach with a polynomial-time separation algorithm that identies distance violations.

I illustrate the use of my algorithm on large-scale instances of up to 75 nodes

which can be solved in less than 60 minutes. The proposed method shows solutions

times many times faster than an alternative nonlinear formulation.
ContributorsSurendran, Vishal Sairam Jaitra (Author) / Sefair, Jorge (Thesis advisor) / Mirchandani, Pitu (Committee member) / Grubesic, Anthony (Committee member) / Arizona State University (Publisher)
Created2019
154536-Thumbnail Image.png
Description
Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite

Revenue management is at the core of airline operations today; proprietary algorithms and heuristics are used to determine prices and availability of tickets on an almost-continuous basis. While initial developments in revenue management were motivated by industry practice, later developments overcoming fundamental omissions from earlier models show significant improvement, despite their focus on relatively esoteric aspects of the problem, and have limited potential for practical use due to computational requirements. This dissertation attempts to address various modeling and computational issues, introducing realistic choice-based demand revenue management models. In particular, this work introduces two optimization formulations alongside a choice-based demand modeling framework, improving on the methods that choice-based revenue management literature has created to date, by providing sensible models for airline implementation.

The first model offers an alternative formulation to the traditional choice-based revenue management problem presented in the literature, and provides substantial gains in expected revenue while limiting the problem’s computational complexity. Making assumptions on passenger demand, the Choice-based Mixed Integer Program (CMIP) provides a significantly more compact formulation when compared to other choice-based revenue management models, and consistently outperforms previous models.

Despite the prevalence of choice-based revenue management models in literature, the assumptions made on purchasing behavior inhibit researchers to create models that properly reflect passenger sensitivities to various ticket attributes, such as price, number of stops, and flexibility options. This dissertation introduces a general framework for airline choice-based demand modeling that takes into account various ticket attributes in addition to price, providing a framework for revenue management models to relate airline companies’ product design strategies to the practice of revenue management through decisions on ticket availability and price.

Finally, this dissertation introduces a mixed integer non-linear programming formulation for airline revenue management that accommodates the possibility of simultaneously setting prices and availabilities on a network. Traditional revenue management models primarily focus on availability, only, forcing secondary models to optimize prices. The Price-dynamic Choice-based Mixed Integer Program (PCMIP) eliminates this two-step process, aligning passenger purchase behavior with revenue management policies, and is shown to outperform previously developed models, providing a new frontier of research in airline revenue management.
ContributorsClough, Michael C (Author) / Gel, Esma (Thesis advisor) / Jacobs, Timothy (Thesis advisor) / Askin, Ronald (Committee member) / Montgomery, Douglas C. (Committee member) / Arizona State University (Publisher)
Created2016
155028-Thumbnail Image.png
Description
Mobile healthy food retailers are a novel alleviation technique to address disparities in access to urban produce stores in food desert communities. Such retailers, which tend to exclusively stock produce items, have become significantly more popular in the past decade, but many are unable to achieve economic sustainability. Therefore, when

Mobile healthy food retailers are a novel alleviation technique to address disparities in access to urban produce stores in food desert communities. Such retailers, which tend to exclusively stock produce items, have become significantly more popular in the past decade, but many are unable to achieve economic sustainability. Therefore, when local and federal grants and scholarships are no longer available for a mobile food retailer, they must stop operating which poses serious health risks to consumers who rely on their services.

To address these issues, a framework was established in this dissertation to aid mobile food retailers with reaching economic sustainability by addressing two key operational decisions. The first decision was the stocked product mix of the mobile retailer. In this problem, it was assumed that mobile retailers want to balance the health, consumer cost, and retailer profitability of their product mix. The second investigated decision was the scheduling and routing plan of the mobile retailer. In this problem, it was assumed that mobile retailers operate similarly to traditional distribution vehicles with the exception that their customers are willing to travel between service locations so long as they are in close proximity.

For each of these problems, multiple formulations were developed which address many of the nuances for most existing mobile food retailers. For each problem, a combination of exact and heuristic solution procedures were developed with many utilizing software independent methodologies as it was assumed that mobile retailers would not have access to advanced computational software. Extensive computational tests were performed on these algorithm with the findings demonstrating the advantages of the developed procedures over other algorithms and commercial software.

The applicability of these techniques to mobile food retailers was demonstrated through a case study on a local Phoenix, AZ mobile retailer. Both the product mix and routing of the retailer were evaluated using the developed tools under a variety of conditions and assumptions. The results from this study clearly demonstrate that improved decision making can result in improved profits and longitudinal sustainability for the Phoenix mobile food retailer and similar entities.
ContributorsWishon, Christopher John (Author) / Villalobos, Rene (Thesis advisor) / Fowler, John (Committee member) / Mirchandani, Pitu (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2016
187702-Thumbnail Image.png
Description
Efforts to enhance the quality of life and promote better health have led to improved water quality standards. Adequate daily fluid intake, primarily from tap water, is crucial for human health. By improving drinking water quality, negative health effects associated with consuming inadequate water can be mitigated. Although the United

Efforts to enhance the quality of life and promote better health have led to improved water quality standards. Adequate daily fluid intake, primarily from tap water, is crucial for human health. By improving drinking water quality, negative health effects associated with consuming inadequate water can be mitigated. Although the United States Environmental Protection Agency (EPA) sets and enforces federal water quality limits at water treatment plants, water quality reaching end users degrades during the water delivery process, emphasizing the need for proactive control systems in buildings to ensure safe drinking water.Future commercial and institutional buildings are anticipated to feature real-time water quality sensors, automated flushing and filtration systems, temperature control devices, and chemical boosters. Integrating these technologies with a reliable water quality control system that optimizes the use of chemical additives, filtration, flushing, and temperature adjustments ensures users consistently have access to water of adequate quality. Additionally, existing buildings can be retrofitted with these technologies at a reasonable cost, guaranteeing user safety. In the absence of smart buildings with the required technology, Chapter 2 describes developing an EPANET-MSX (a multi-species extension of EPA’s water simulation tool) model for a typical 5-story building. Chapter 3 involves creating accurate nonlinear approximation models of EPANET-MSX’s complex fluid dynamics and chemical reactions and developing an open-loop water quality control system that can regulate the water quality based on the approximated state of water quality. To address potential sudden changes in water quality, improve predictions, and reduce the gap between approximated and true state of water quality, a feedback control loop is developed in Chapter 4. Lastly, this dissertation includes the development of a reinforcement learning (RL) based water quality control system for cases where the approximation models prove inadequate and cause instability during implementation with a real building water network. The RL-based control system can be implemented in various buildings without the need to develop new hydraulic models and can handle the stochastic nature of water demand, ensuring the proactive control system’s effectiveness in maintaining water quality within safe limits for consumption.
ContributorsGhasemzadeh, Kiarash (Author) / Mirchandani, Pitu (Thesis advisor) / Boyer, Treavor (Committee member) / Ju, Feng (Committee member) / Pedrielli, Giulia (Committee member) / Arizona State University (Publisher)
Created2023
187307-Thumbnail Image.png
Description
Networks are a versatile modeling tool for the cyber and physical infrastructure that characterize society. They can be used to describe system spatiotemporal dynamics, including distribution of commodities, movement of agents, and data transmission. This flexibility has resulted in the widespread use of network optimization techniques for decision-making in telecommunications,

Networks are a versatile modeling tool for the cyber and physical infrastructure that characterize society. They can be used to describe system spatiotemporal dynamics, including distribution of commodities, movement of agents, and data transmission. This flexibility has resulted in the widespread use of network optimization techniques for decision-making in telecommunications, transportation, commerce, among other systems. However, realistic network problems are typically large-scale and require the use of integer variables to incorporate design or logical system constraints. This makes such problems hard to solve and precludes their wide applicability in the solution of applied problems. This dissertation studies four large-scale optimization problems with underlying network structure in different domain applications, including wireless sensor networks, wastewater monitoring, and scheduling. The problems of interest are formulated using mixed-integer optimization formulations. The proposed solution approaches in this dissertation include branch-and-cut and heuristic algorithms, which are enhanced with network-based valid inequalities and network reduction techniques. The first chapter studies a relay node placement problem in wireless sensor networks, with and without the presence of transmission obstacles in the deployment region. The proposed integer linear programming approach leverages the underlying network structure to produce valid inequalities and network reduction heuristics, which are incorporated in the branch-and-bound exploration. The solution approach outperforms the equivalent nonlinear model and solves instances with up to 1000 sensors within reasonable time. The second chapter studies the continuous version of the maximum capacity (widest) path interdiction problem and introduces the first known polynomial time algorithm to solve the problem using a combination of binary search and the discrete version of the Newton’s method. The third chapter explores the service agent transport interdiction problem in autonomous vehicle systems, where an agent schedules service tasks in the presence of an adversary. This chapter proposes a single stage branch-and-cut algorithm to solve the problem, along with several enhancement techniques to improve scalability. The last chapter studies the optimal placement of sensors in a wastewater network to minimize the maximum coverage (load) of placed sensors. This chapter proposes a branch-and-cut algorithm enhanced with network reduction techniques and strengthening constraints.
ContributorsMitra, Ankan (Author) / Sefair, Jorge A (Thesis advisor) / Mirchandani, Pitu (Committee member) / Grubesic, Anthony (Committee member) / Byeon, Geunyeong (Committee member) / Arizona State University (Publisher)
Created2023