Matching Items (4)
Filtering by

Clear all filters

152182-Thumbnail Image.png
Description
There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water

There is a critical need for the development of clean and efficient energy sources. Hydrogen is being explored as a viable alternative to fuels in current use, many of which have limited availability and detrimental byproducts. Biological photo-production of H2 could provide a potential energy source directly manufactured from water and sunlight. As a part of the photosynthetic electron transport chain (PETC) of the green algae Chlamydomonas reinhardtii, water is split via Photosystem II (PSII) and the electrons flow through a series of electron transfer cofactors in cytochrome b6f, plastocyanin and Photosystem I (PSI). The terminal electron acceptor of PSI is ferredoxin, from which electrons may be used to reduce NADP+ for metabolic purposes. Concomitant production of a H+ gradient allows production of energy for the cell. Under certain conditions and using the endogenous hydrogenase, excess protons and electrons from ferredoxin may be converted to molecular hydrogen. In this work it is demonstrated both that certain mutations near the quinone electron transfer cofactor in PSI can speed up electron transfer through the PETC, and also that a native [FeFe]-hydrogenase can be expressed in the C. reinhardtii chloroplast. Taken together, these research findings form the foundation for the design of a PSI-hydrogenase fusion for the direct and continuous photo-production of hydrogen in vivo.
ContributorsReifschneider, Kiera (Author) / Redding, Kevin (Thesis advisor) / Fromme, Petra (Committee member) / Jones, Anne (Committee member) / Arizona State University (Publisher)
Created2013
133710-Thumbnail Image.png
Description
Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided by a cathode via a chemical mediator. Although this light-driven

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can fix nitrogen (N2) and produce molecular hydrogen (H2). Recently, the Redding and Jones labs created a microbial photoelectrosynthesis cell that utilized these properties to produce molecular hydrogen using electrons provided by a cathode via a chemical mediator. Although this light-driven creation of fuel within a microbial electrochemical cell was the first of its kind, its production rate of hydrogen was low. It was hypothesized that the injection of electrons into H. modesticaldum was a rate-limiting step in H2 production. Within the H. modesticaldum genome, there is a gene (HM1_0653) that encodes a multi-heme cytochrome c that may be directly involved in this step. From past transcriptomic experiments, this gene is known to be very poorly expressed in H. modesticaldum. Our hypothesis was that increasing its expression with a strong promoter could result in faster electron transfer, and thus, increased H2 production in the photoelectrosynthesis cell. In order to test this hypothesis, different promoters that could lead to high expression in H. modesticaldum were included with a copy of HM1_0653 in various plasmid constructs that were first cloned into E. coli before being conjugated with H. modesticaldum. Cloning in E. coli was possible with the newly derived transformation system and by reducing the copy-number of the vector system. When overexpressed in E. coli, the protein appeared to be expressed, but its purification proved to be difficult. Moreover, conjugation with H. modesticaldum was not achieved. Our results are consistent with the idea that high level overexpression in H. modesticaldum was toxic. An inducible promoter may circumvent these issues and prove more successful in future experiments.
ContributorsSmith, Chelsea Elizabeth (Author) / Redding, Kevin (Thesis director) / Cadillo-Quiroz, Hinsby (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134538-Thumbnail Image.png
Description
Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via an electrode and redox mediator in a light-dependent fashion, as shown recently by the Redding and Jones research groups. These

Heliobacterium modesticaldum (H. modesticaldum) is an anaerobic photoheterotroph that can produce molecular hydrogen (H2) when it is fixing dinitrogen (N2). In addition, electrons can be injected into this organism via an electrode and redox mediator in a light-dependent fashion, as shown recently by the Redding and Jones research groups. These factors make H. modesticaldum an ideal organism for use in a microbial photoelectrosynthesis cell, in which electricity can be used to power specific metabolic processes that produce a desired compound (e.g. H2). However, the injection of electrons into this organism is not optimal, which may limit the H2 production rate. There is a gene (HM1_0653) in the genome encoding a multi-heme cytochrome c that is similar to the proteins known to be used for exit of electrons in the well- known electrode-respiring bacteria (e.g. Geobacteria). RNA-sequencing in the Redding lab has shown that the HM1_0653 gene is very poorly expressed in H. modesticaldum. Boosting expression of this cytochrome could lead to faster electron transfer into the cells and thereby more H2 production via photoelectrosynthesis. In order to gain a deeper understanding of this protein, it was expressed in E.coli by two different versions: (1) the entire gene and (2) a truncated gene with an additional hexahistidine tag (truncHM1_0653). Both cultures had a pink color, indicating the biosynthesis of cytochrome. It was discovered that the HM1_0653 protein was likely released into the medium and shows the most promise for ease of purification of HM1_0653. Furthermore, we explored protein expression in H. modesticaldum using the current transformation system in the Redding Lab, but the combination of gene toxicity and copy number of the vector resulted in cloning difficulties in E.coli. An alternative vector may prove more successful.
ContributorsHerrera-Theut, Kathryn Ann (Author) / Redding, Kevin (Thesis director) / Jones, Anne (Committee member) / Torres, Cesar (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154347-Thumbnail Image.png
Description
One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low

One of the greatest problems facing society today is the development of a

sustainable, carbon neutral energy source to curb the reliance on fossil fuel combustion as the primary source of energy. To overcome this challenge, research efforts have turned to biology for inspiration, as nature is adept at inter-converting low molecular weight precursors into complex molecules. A number of inorganic catalysts have been reported that mimic the active sites of energy-relevant enzymes such as hydrogenases and carbon monoxide dehydrogenase. However, these inorganic models fail to achieve the high activity of the enzymes, which function in aqueous systems, as they lack the critical secondary-shell interactions that enable the active site of enzymes to outperform their organometallic counterparts.

To address these challenges, my work utilizes bio-hybrid systems in which artificial proteins are used to modulate the properties of organometallic catalysts. This approach couples the diversity of organometallic function with the robust nature of protein biochemistry, aiming to utilize the protein scaffold to not only enhance rates of reaction, but also to control catalytic cycles and reaction outcomes. To this end, I have used chemical biology techniques to modify natural protein structures and augment the H2 producing ability of a cobalt-catalyst by a factor of five through simple mutagenesis. Concurrently I have designed and characterized a de novo peptide that incorporates various iron sulfur clusters at discrete distances from one another, facilitating electron transfer between the two. Finally, using computational methodologies I have engineered proteins to alter the specificity of a CO2 reduction reaction. The proteins systems developed herein allow for study of protein secondary-shell interactions during catalysis, and enable structure-function relationships to be built. The complete system will be interfaced with a solar fuel cell, accepting electrons from a photosensitized dye and storing energy in chemical bonds, such as H2 or methanol.
ContributorsSommer, Dayn (Author) / Ghirlanda, Giovanna (Thesis advisor) / Redding, Kevin (Committee member) / Moore, Gary (Committee member) / Arizona State University (Publisher)
Created2016