Matching Items (3)
Filtering by

Clear all filters

151745-Thumbnail Image.png
Description
The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states,

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.
ContributorsJuday, Reid (Author) / Ponce, Fernando A. (Thesis advisor) / Drucker, Jeff (Committee member) / Mccartney, Martha R (Committee member) / Menéndez, Jose (Committee member) / Shumway, John (Committee member) / Arizona State University (Publisher)
Created2013
151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013
158369-Thumbnail Image.png
Description
The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies

The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies and (ii) layers used in device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication.

Methods were developed to synthesize amorphous-Ge (a-Ge) and homoepitaxial-Si dielectric thin-films with loss tangents of 1–2×10 -6 and 0.6–2×10 -5 at near single-photon powers and sub-Kelvin temperatures (≈40 mK), making them potentially a better choice over undoped silicon and sapphire substrates used in quantum devices. The Nb/Ge interface has 20 nm of chemical intermixing, which is reduced by a factor of four using 10 nm Ta diffusion layers. Niobium coplanar resonators using this structure exhibit reduced microwave losses.

The nature and concentration of defects near Nb-Si interfaces prepared with commonly-used Si surface treatments were characterized. All samples have H, C, O, F, and Cl in the Si within 50 nm of the interface, and electrically active defects with activation energies of 0.147, 0.194, 0.247, 0.339, and 0.556 eV above the valence band maximum (E vbm ), with concentrations dominated by a hole trap at E vbm +0.556 eV (presumably Nb Si ). The optimum surface treatment is an HF etch followed by an in-situ 100 eV Ar ion mill. RCA etches, and higher energy ion milling processes increase the concentration of electrically active defects.

A thin SrTiO 3 buffer layer used in YBa 2 Cu 3 O 7-δ superconductor/high-performance Ba(Zn 1/3 Ta 2/3 )O 3 and Ba(Cd 1/3 Ta 2/3 )O 3 microwave dielectric trilayers improves the structural quality of the layers and results in 90 K superconductor critical temperatures. This advance enables the production of more compact high-temperature superconductor capacitors, inductors, and microwave microstrip and stripline devices.
ContributorsKopas, Cameron Joseph (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry L. (Committee member) / Carpenter, Ray W (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2020