Matching Items (8)
Filtering by

Clear all filters

150364-Thumbnail Image.png
Description
Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser

Dual-wavelength laser sources have various existing and potential applications in wavelength division multiplexing, differential techniques in spectroscopy for chemical sensing, multiple-wavelength interferometry, terahertz-wave generation, microelectromechanical systems, and microfluidic lab-on-chip systems. In the drive for ever smaller and increasingly mobile electronic devices, dual-wavelength coherent light output from a single semiconductor laser diode would enable further advances and deployment of these technologies. The output of conventional laser diodes is however limited to a single wavelength band with a few subsequent lasing modes depending on the device design. This thesis investigates a novel semiconductor laser device design with a single cavity waveguide capable of dual-wavelength laser output with large spectral separation. The novel dual-wavelength semiconductor laser diode uses two shorter- and longer-wavelength active regions that have separate electron and hole quasi-Fermi energy levels and carrier distributions. The shorter-wavelength active region is based on electrical injection as in conventional laser diodes, and the longer-wavelength active region is then pumped optically by the internal optical field of the shorter-wavelength laser mode, resulting in stable dual-wavelength laser emission at two different wavelengths quite far apart. Different designs of the device are studied using a theoretical model developed in this work to describe the internal optical pumping scheme. The carrier transport and separation of the quasi-Fermi distributions are then modeled using a software package that solves Poisson's equation and the continuity equations to simulate semiconductor devices. Three different designs are grown using molecular beam epitaxy, and broad-area-contact laser diodes are processed using conventional methods. The modeling and experimental results of the first generation design indicate that the optical confinement factor of the longer-wavelength active region is a critical element in realizing dual-wavelength laser output. The modeling predicts lower laser thresholds for the second and third generation designs; however, the experimental results of the second and third generation devices confirm challenges related to the epitaxial growth of the structures in eventually demonstrating dual-wavelength laser output.
ContributorsGreen, Benjamin C (Author) / Zhang, Yong-Hang (Thesis advisor) / Ning, Cun-Zheng (Committee member) / Tao, Nongjian (Committee member) / Roedel, Ronald J (Committee member) / Arizona State University (Publisher)
Created2011
150874-Thumbnail Image.png
Description
A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction

A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction solar cells and multicolor detectors. The MBE system upgrade involved the conversion of a former III-V chamber for II-VI growth. This required intensive cleaning of the chamber and components to prevent contamination. Special features including valved II-VI sources and the addition of a cold trap allowed for the full system to be baked to 200 degrees Celsius to improve vacuum conditions and reduce background impurity concentrations in epilayers. After the conversion, the system was carefully calibrated and optimized for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of improving quality with decreasing growth temperature reaching a minimum full-width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe epilayer quality increased with growth temperature under Zn rich conditions attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were successfully observed and used to obtain growth rate in situ for varying flux and temperature levels. For a fixed flux ratio, growth rate decreased with growth temperature as the desorption rate increased. A directly proportional dependence of growth rate on Te flux was observed for Zn rich growth. Furthermore, a method for determining the flux ratio necessary for attaining the stoichiometric condition was demonstrated.
ContributorsDettlaff, W. Hank G (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
150681-Thumbnail Image.png
Description
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
ContributorsChen, Dongzi (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
157257-Thumbnail Image.png
Description
Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the greater electronegativity difference between group-II and group-VI atoms. As the electronegativity between the atoms increases, the materials tend to have

Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the greater electronegativity difference between group-II and group-VI atoms. As the electronegativity between the atoms increases, the materials tend to have more insulator-like properties, including higher energy band gaps and lower indices of refraction. This enables significant differences in the optical and electronic properties between III-V, II-VI, and IV-VI semiconductors. Many of these binary compounds have similar lattice constants and therefore can be grown epitaxially on top of each other to create monolithic heterovalent and heterocrystalline heterostructures with optical and electronic properties unachievable in conventional isovalent heterostructures.

Due to the difference in vapor pressures and ideal growth temperatures between the different materials, precise growth methods are required to optimize the structural and optical properties of the heterovalent heterostructures. The high growth temperatures of the III-V materials can damage the II-VI barrier layers, and therefore a compromise must be found for the growth of high-quality III-V and II-VI layers in the same heterostructure. In addition, precise control of the interface termination has been shown to play a significant role in the crystal quality of the different layers in the structure. For non-polar orientations, elemental fluxes of group-II and group-V atoms consistently help to lower the stacking fault and dislocation density in the II-VI/III-V heterovalent heterostructures.

This dissertation examines the epitaxial growth of heterovalent and heterocrystalline heterostructures lattice-matched to GaAs, GaSb, and InSb substrates in a single-chamber growth system. The optimal growth conditions to achieve alternating layers of III-V, II-VI, and IV-VI semiconductors have been investigated using temperature ramps, migration-enhanced epitaxy, and elemental fluxes at the interface. GaSb/ZnTe distributed Bragg reflectors grown in this study significantly outperform similar isovalent GaSb-based reflectors and show great promise for mid-infrared applications. Also, carrier confinement in GaAs/ZnSe quantum wells was achieved with a low-temperature growth technique for GaAs on ZnSe. Additionally, nearly lattice-matched heterocrystalline PbTe/CdTe/InSb heterostructures with strong infrared photoluminescence were demonstrated, along with virtual (211) CdZnTe/InSb substrates with extremely low defect densities for long-wavelength optoelectronic applications.
ContributorsLassise, Maxwell Brock (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David J. (Committee member) / Johnson, Shane R (Committee member) / Mccartney, Martha R (Committee member) / Arizona State University (Publisher)
Created2019
153098-Thumbnail Image.png
Description
There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies u

There has been recent interest in demonstrating solar cells which approach the detailed-balance or thermodynamic efficiency limit in order to establish a model system for which mass-produced solar cells can be designed. Polycrystalline CdS/CdTe heterostructures are currently one of many competing solar cell material systems. Despite being polycrystalline, efficiencies up to 21 % have been demonstrated by the company First Solar. However, this efficiency is still far from the detailed-balance limit of 32.1 % for CdTe. This work explores the use of monocrystalline CdTe/MgCdTe and ZnTe/CdTe/MgCdTe double heterostructures (DHs) grown on (001) InSb substrates by molecular beam epitaxy (MBE) for photovoltaic applications.

Undoped CdTe/MgCdTe DHs are first grown in order to determine the material quality of the CdTe epilayer and to optimize the growth conditions. DH samples show strong photoluminescence with over double the intensity as that of a GaAs/AlGaAs DH with an identical layer structure. Time-resolved photoluminescence of the CdTe/MgCdTe DH gives a carrier lifetime of up to 179 ns for a 2 µm thick CdTe layer, which is more than one order of magnitude longer than that of polycrystalline CdTe films. MgCdTe barrier layers are found to be effective at confining photogenerated carriers and have a relatively low interface recombination velocity of 461 cm/s. The optimal growth temperature and Cd/Te flux ratio is determined to be 265 °C and 1.5, respectively.

Monocrystalline ZnTe/CdTe/MgCdTe P-n-N DH solar cells are designed, grown, processed into solar cell devices, and characterized. A maximum efficiency of 6.11 % is demonstrated for samples without an anti-reflection coating. The low efficiency is mainly due to the low open-circuit voltage (Voc), which is attributed to high dark current caused by interface recombination at the ZnTe/CdTe interface. Low-temperature measurements show a linear increase in Voc with decreasing temperature down to 77 K, which suggests that the room-temperature operation is limited by non-radiative recombination. An open-circuit voltage of 1.22 V and an efficiency of 8.46 % is demonstrated at 77 K. It is expected that a coherently strained MgCdTe/CdTe/MgCdTe DH solar cell design will produce higher efficiency and Voc compared to the ZnTe/CdTe/MgCdTe design with relaxed ZnTe layer.
ContributorsDiNezza, Michael John (Author) / Zhang, Yong-Hang (Thesis advisor) / Johnson, Shane (Committee member) / Tao, Meng (Committee member) / Holman, Zachary (Committee member) / Arizona State University (Publisher)
Created2014
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017
155448-Thumbnail Image.png
Description
In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information

In this dissertation research, conventional and aberration-corrected (AC) transmission electron microscopy (TEM) techniques were used to evaluate the structural and compositional properties of thin-film semiconductor compounds/alloys grown by molecular beam epitaxy for infrared photo-detection. Imaging, diffraction and spectroscopy techniques were applied to TEM specimens in cross-section geometry to extract information about extended structural defects, chemical homogeneity and interface abruptness. The materials investigated included InAs1-xBix alloys grown on GaSb (001) substrates, InAs/InAs1-xSbx type-II superlattices grown on GaSb (001) substrates, and CdTe-based thin-film structures grown on InSb (001) substrates.

The InAsBi dilute-bismide epitaxial films were grown on GaSb (001) substrates at relatively low growth temperatures. The films were mostly free of extended defects, as observed in diffraction-contrast images, but the incorporation of bismuth was not homogeneous, as manifested by the lateral Bi-composition modulation and Bi-rich surface droplets. Successful Bi incorporation into the InAs matrix was confirmed using lattice expansion measurements obtained from misfit strain analysis of high-resolution TEM (HREM) images.

Analysis of averaged intensity line profiles in HREM and scanning TEM (STEM) images of the Ga-free InAs/InAs1-xSbx type-II strained superlattices indicated slight variations in layer thickness across the superlattice stack. The interface abruptness was evaluated using misfit strain analysis of AC-STEM images, electron energy-loss spectroscopy and 002 dark-field imaging. The compositional profiles of antimony across the superlattices were fitted to a segregation model and revealed a strong antimony segregation probability.

The CdTe/MgxCd1-xTe double-heterostructures were grown with Cd overflux in a dual-chamber molecular beam epitaxy with an ultra-high vacuum transfer loadlock. Diffraction-contrast images showed that the growth temperature had a strong impact on the structural quality of the epilayers. Very abrupt CdTe/InSb interfaces were obtained for epilayers grown at the optimum temperature of 265 °C, and high-resolution imaging using AC-STEM revealed an interfacial transition region with a width of a few monolayers and smaller lattice spacing than either CdTe or InSb.
ContributorsLu, Jing (Author) / Smith, David J. (Thesis advisor) / Alford, Terry L. (Committee member) / Crozier, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2017
158737-Thumbnail Image.png
Description
The molecular beam epitaxy growth of the III-V semiconductor alloy indium arsenide antimonide bismide (InAsSbBi) is investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on gallium antimonide (GaSb) substrates are examined. The relationships between Bi incorporation, surface morphology, growth temperature, and

The molecular beam epitaxy growth of the III-V semiconductor alloy indium arsenide antimonide bismide (InAsSbBi) is investigated over a range of growth temperatures and V/III flux ratios. Bulk and quantum well structures grown on gallium antimonide (GaSb) substrates are examined. The relationships between Bi incorporation, surface morphology, growth temperature, and group-V flux are explored. A growth model is developed based on the kinetics of atomic desorption, incorporation, surface accumulation, and droplet formation. The model is applied to InAsSbBi, where the various process are fit to the Bi, Sb, and As mole fractions. The model predicts a Bi incorporation limit for lattice matched InAsSbBi grown on GaSb.The optical performance and bandgap energy of InAsSbBi is examined using photoluminescence spectroscopy. Emission is observed from low to room temperature with peaks ranging from 3.7 to 4.6 μm. The bandgap as function of temperature is determined from the first derivative maxima of the spectra fit to an Einstein single oscillator model. The photoluminescence spectra is observed to significantly broaden with Bi content as a result of lateral composition variations and the highly mismatched nature of Bi atoms, pairs, and clusters in the group-V sublattice.
A bowing model is developed for the bandgap and band offsets of the quinary alloy GaInAsSbBi and its quaternary constituents InAsSbBi and GaAsSbBi. The band anticrossing interaction due to the highly mismatched Bi atoms is incorporated into the relevant bowing terms. An algorithm is developed for the design of mid infrared GaInAsSbBi
quantum wells, with three degrees freedom to independently tune transition energy, in plane strain, and band edge offsets for desired electron and hole confinement.
The physical characteristics of the fundamental absorption edge of the relevant III-V binaries GaAs, GaSb, InAs, and InSb are examined using spectroscopic ellipsometry. A five parameter model is developed that describes the key physical characteristics of the absorption edge, including the bandgap energy, the Urbach tail, and the absorption coefficient at the bandgap.
The quantum efficiency and recombination lifetimes of bulk InAs0.911Sb0.089 grown by molecular beam epitaxy is investigated using excitation and temperature dependent steady state photoluminescence. The Shockley-Read-Hall, radiative, and Auger recombination lifetimes are determined.
ContributorsSchaefer, Stephen Thomas (Author) / Johnson, Shane R (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Goryll, Michael (Committee member) / King, Richard (Committee member) / Arizona State University (Publisher)
Created2020