Matching Items (11)
Filtering by

Clear all filters

152319-Thumbnail Image.png
Description
In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably,

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.
ContributorsHuang, Mengchu, 1987- (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151955-Thumbnail Image.png
Description
This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy

This dissertation is focused on material property exploration and analysis using computational quantum mechanics methods. Theoretical calculations were performed on the recently discovered hexahydride materials A2SiH6 (A=Rb, K) to calculate the lattice dynamics of the systems in order to check for structural stability, verify the experimental Raman and infrared spectrospcopy results, and obtain the theoretical free energies of formation. The electronic structure of the systems was calculated and the bonding and ionic properties of the systems were analyzed. The novel hexahydrides were compared to the important hydrogen storage material KSiH3. This showed that the hypervalent nature of the SiH62- ions reduced the Si-H bonding strength considerably. These hydrogen rich compounds could have promising energy applications as they link to alternative hydrogen fuel technology. The carbide systems Li-C (A=Li,Ca,Mg) were studied using \emph{ab initio} and evolutionary algorithms at high pressures. At ambient pressure Li2C2 and CaC2 are known to contain C22- dumbbell anions and CaC2 is polymorphic. At elevated pressure both CaC2 and Li2C2 display polymorphism. At ambient pressure the Mg-C system contains several experimentally known phases, however, all known phases are shown to be metastable with respect to the pure elements Mg and C. First principle investigation of the configurational space of these compounds via evolutionary algorithms results in a variety of metastable and unique structures. The binary compounds ZnSb and ZnAs are II-V electron-poor semiconductors with interesting thermoelectric properties. They contain rhomboid rings composed of Zn2Sb2 (Zn2As2) with multi-centered covalent bonds which are in turn covalently bonded to other rings via two-centered, two-electron bonds. Ionicity was explored via Bader charge analysis and it appears that the low ionicity that these materials display is a necessary condition of their multicentered bonding. Both compounds were found to have narrow, indirect band gaps with multi-valley valence and conduction bands; which are important characteristics for high thermopower in thermoelectric materials. Future work is needed to analyze the lattice properties of the II-V CdSb-type systems, especially in order to find the origin of the extremely low thermal conductivity that these systems display.
ContributorsBenson, Daryn Eugene (Author) / Häussermann, Ulrich (Thesis advisor) / Shumway, John (Thesis advisor) / Chamberlin, Ralph (Committee member) / Sankey, Otto (Committee member) / Treacy, Mike (Committee member) / Arizona State University (Publisher)
Created2013
151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013
150681-Thumbnail Image.png
Description
This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This

This thesis mainly focuses on the study of quantum efficiency (QE) and its measurement, especially for nanowires (NWs). First, a brief introduction of nano-technology and nanowire is given to describe my initial research interest. Next various fundamental kinds of recombination mechanisms are described; both for radiative and non-radiative processes. This is an introduction for defining the internal quantum efficiency (IQE). A relative IQE measurement method is shown following that. Then it comes to the major part of the thesis discussing a procedure of quantum efficiency measurement using photoluminescence (PL) method and an integrating sphere, which has not been much applied to nanowires (NWs). In fact this is a convenient and useful approach for evaluating the quality of NWs since it considers not only the PL emission but also the absorption of NWs. The process is well illustrated and performed with both wavelength-dependent and power-dependent measurements. The measured PLQE is in the range of 0.3% ~ 5.4%. During the measurement, a phenomenon called photodegradation is observed and examined by a set of power-dependence measurements. This effect can be a factor for underestimating the PLQE and a procedure is introduced during the sample preparation process which managed to reduce this effect for some degree.
ContributorsChen, Dongzi (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
153881-Thumbnail Image.png
Description
In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study

In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study in growing two-segment axial nanowires and radial nanobelts/sheets using the ternary CdSxSe1-x alloys. I demonstrated simultaneous red (from CdSe-rich) and green (from CdS-rich) light emission from a single monolithic heterostructure with a maximum wavelength separation of 160 nm. I also demonstrated the first simultaneous two-color lasing from a single nanosheet heterostructure with a wavelength separation of 91 nm under sufficiently strong pumping power.

In the second part, I considered several combinations of source materials with different growth methods in order to extend the spectral coverage of previously demonstrated structures towards shorter wavelengths to achieve full-color emissions. I achieved this with the growth of multisegment heterostructure nanosheets (MSHNs), using ZnS and CdSe chalcogenides, via our novel growth method. By utilizing this method, I demonstrated the first growth of ZnCdSSe MSHNs with an overall lattice mismatch of 6.6%, emitting red, green and blue light simultaneously, in a single furnace run using a simple CVD system. The key to this growth method is the dual ion exchange process which converts nanosheets rich in CdSe to nanosheets rich in ZnS, demonstrated for the first time in this work. Tri-chromatic white light emission with different correlated color temperature values was achieved under different growth conditions. We demonstrated multicolor (191 nm total wavelength separation) laser from a single monolithic semiconductor nanostructure for the first time. Due to the difficulties associated with growing semiconductor materials of differing composition on a given substrate using traditional planar epitaxial technology, our nanostructures and growth method are very promising for various device applications, including but not limited to: illumination, multicolor displays, photodetectors, spectrometers and monolithic multicolor lasers.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun Zheng (Thesis advisor) / Palais, Joseph C. (Committee member) / Yu, Hongbin (Committee member) / Mardinly, A. John (Committee member) / Arizona State University (Publisher)
Created2015
153888-Thumbnail Image.png
Description
Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS)

Nanowires are one-dimensional (1D) structures with diameter on the nanometer scales with a high length-to-diameter aspect ratio. Nanowires of various materials including semiconductors, dielectrics and metals have been intensively researched in the past two decades for applications to electrical and optical devices. Typically, nanowires are synthesized using the vapor-liquid-solid (VLS) approach, which allows defect-free 1D growth despite the lattice mismatch between nanowires and substrates. Lattice mismatch issue is a serious problem in high-quality thin film growth of many semiconductors and non-semiconductors. Therefore, nanowires provide promising platforms for the applications requiring high crystal quality materials.

With the 1D geometry, nanowires are natural optical waveguides for light guiding and propagation. By introducing feedback mechanisms to nanowire waveguides, such as the cleaved end facets, the nanowires can work as ultra-small size lasers. Since the first demonstration of the room-temperature ultraviolet nanowire lasers in 2001, the nanowire lasers covering from ultraviolet to mid infrared wavelength ranges have been intensively studied. This dissertation focuses on the optical characterization and laser fabrication of two nanowire materials: erbium chloride silicate nanowires and composition-graded CdSSe semiconductor alloy nanowires.

Chapter 1 – 5 of this dissertation presents a comprehensive characterization of a newly developed erbium compound material, erbium chloride silicate (ECS) in a nanowire form. Extensive experiments demonstrated the high crystal quality and excellent optical properties of ECS nanowires. Optical gain higher than 30 dB/cm at 1.53 μm wavelength is demonstrated on single ECS nanowires, which is higher than the gain of any reported erbium materials. An ultra-high Q photonic crystal micro-cavity is designed on a single ECS nanowire towards the ultra-compact lasers at communication wavelengths. Such ECS nanowire lasers show the potential applications of on-chip photonics integration.

Chapter 6 – 7 presents the design and demonstration of dynamical color-controllable lasers on a single CdSSe alloy nanowire. Through the defect-free VLS growth, engineering of the alloy composition in a single nanowire is achieved. The alloy composition of CdSxSe1-x uniformly varies along the nanowire axis from x=1 to x=0, giving the opportunity of multi-color lasing in a monolithic structure. By looping the wide-bandgap end of the alloy nanowire through nanoscale manipulation, the simultaneous two-color lasing at green and red colors are demonstrated. The 107 nm wavelength separation of the two lasing colors is much larger than the gain bandwidth of typical semiconductors. Since the two-color lasing shares the output port, the color of the total lasing output can be controlled dynamically between the two fundamental colors by changing the relative output power of two lasing colors. Such multi-color lasing and continuous color tuning in a wide spectral range would eventually enable color-by-design lasers to be used for lighting, display and many other applications.
ContributorsLiu, Zhicheng (Author) / Ning, Cun-Zheng (Thesis advisor) / Palais, Joseph (Committee member) / Yu, Hongbin (Committee member) / Yao, Yu (Committee member) / Arizona State University (Publisher)
Created2015
152553-Thumbnail Image.png
Description
This thesis summarizes modeling and simulation of plasmonic waveguides and nanolasers. The research includes modeling of dielectric constants of doped semiconductor as a potential plasmonic material, simulation of plasmonic waveguides with different configurations and geometries, simulation and design of plasmonic nanolasers. In the doped semiconductor part, a more accurate model

This thesis summarizes modeling and simulation of plasmonic waveguides and nanolasers. The research includes modeling of dielectric constants of doped semiconductor as a potential plasmonic material, simulation of plasmonic waveguides with different configurations and geometries, simulation and design of plasmonic nanolasers. In the doped semiconductor part, a more accurate model accounting for dielectric constant of doped InAs was proposed. In the model, Interband transitions accounted for by Adachi's model considering Burstein-Moss effect and free electron effect governed by Drude model dominate in different spectral regions. For plasmonic waveguide part, Insulator-Metal-Insulator (IMI) waveguide, silver nanowire waveguide with and without substrate, Metal-Semiconductor-Metal (MSM) waveguide and Metal-Insulator-Semiconductor-Insulator-Metal (MISIM) waveguide were investigated respectively. Modal analysis was given for each part. Lastly, a comparative study of plasmonic and optical modes in an MSM disk cavity was performed by FDTD simulation for room temperature at the telecommunication wavelength. The results show quantitatively that plasmonic modes have advantages over optical modes in the scalability down to small size and the cavity Quantum Electrodynamics(QED) effects due to the possibility of breaking the diffraction limit. Surprisingly for lasing characteristics, though plasmonic modes have large loss as expected, minimal achievable threshold can be attained for whispering gallery plasmonic modes with azimuthal number of 2 by optimizing cavity design at 1.55µm due to interplay of metal loss and radiation loss.
ContributorsWang, Haotong (Author) / Ning, Cunzheng (Thesis advisor) / Palais, Joseph (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2014
152692-Thumbnail Image.png
Description
Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic

Nanolasers represents the research frontier in both the areas of photonics and nanotechnology for its interesting properties in low dimension physics, its appealing prospects in integrated photonics, and other on-chip applications. In this thesis, I present my research work on fabrication and characterization of a new type of nanolasers: metallic cavity nanolasers. The last ten years witnessed a dramatic paradigm shift from pure dielectric cavity to metallic cavity in the research of nanolasers. By using low loss metals such as silver, which is highly reflective at near infrared, light can be confined in an ultra small cavity or waveguide with sub-wavelength dimensions, thus enabling sub-wavelength cavity lasers. Based on this idea, I fabricated two different kinds of metallic cavity nanolasers with rectangular and circular geometries with InGaAs as the gain material and silver as the metallic shell. The lasing wavelength is around 1.55 μm, intended for optical communication applications. Continuous wave (CW) lasing at cryogenic temperature under current injection was achieved on devices with a deep sub-wavelength physical cavity volume smaller than 0.2 λ3. Improving device fabrication process is one of the main challenges in the development of metallic cavity nanolasers due to its ultra-small size. With improved fabrication process and device design, CW lasing at room temperature was demonstrated as well on a sub-wavelength rectangular device with a physical cavity volume of 0.67 λ3. Experiments verified that a small circular nanolasers supporting TE¬01 mode can generate an azimuthal polarized laser beam, providing a compact such source under electrical injection. Sources with such polarizations could have many special applications. Study of digital modulation of circular nanolasers showed that laser noise is an important factor that will affect the data rate of the nanolaser when used as the light source in optical interconnects. For future development, improving device fabrication processes is required to improve device performance. In addition, techniques need to be developed to realize nanolaser/Si waveguide integration. In essence, resolving these two critical issues will finally pave the way for these nanolasers to be used in various practical applications.
ContributorsDing, Kang (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Palais, Joseph (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014
153104-Thumbnail Image.png
Description
Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in

Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this dissertation, several issues concerning structural, electronic, and optical properties of III-nitrides have been investigated using transmission electron microscopy. First, the microstructure of InxGa1-xN (x = 0.22, 0.46, 0.60, and 0.67) films grown by metal-modulated epitaxy on GaN buffer /sapphire substrates is studied. The effect of indium composition on the structure of InGaN films and strain relaxation is carefully analyzed. High luminescence intensity, low defect density, and uniform full misfit strain relaxation are observed for x = 0.67. Second, the properties of high-indium-content InGaN thin films using a new molecular beam epitaxy method have been studied for applications in solar cell technologies. This method uses a high quality AlN buffer with large lattice mismatch that results in a critical thickness below one lattice parameter. Finally, the effect of different substrates and number of gallium sources on the microstructure of AlGaN-based deep ultraviolet laser has been studied. It is found that defects in epitaxial layer are greatly reduced when the structure is deposited on a single crystal AlN substrate. Two gallium sources in the growth of multiple quantum wells active region are found to cause a significant improvement in the quality of quantum well structures.
ContributorsWei, Yong (Author) / Ponce, Fernando (Thesis advisor) / Chizmeshya, Andrew (Committee member) / McCartney, Martha (Committee member) / Menéndez, Jose (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2014
152671-Thumbnail Image.png
Description
ABSTRACT This thesis focuses on structural characterizations and optical properties of Si, Ge based semiconductor alloys. Two material systems are characterized: Si-based III-V/IV alloys, which represent a possible pathway to augment the optical performance of elemental silicon as a solar cell absorber layer, and Ge-based Ge1-ySny and Ge1-x-ySixSny systems which

ABSTRACT This thesis focuses on structural characterizations and optical properties of Si, Ge based semiconductor alloys. Two material systems are characterized: Si-based III-V/IV alloys, which represent a possible pathway to augment the optical performance of elemental silicon as a solar cell absorber layer, and Ge-based Ge1-ySny and Ge1-x-ySixSny systems which are applicable to long wavelength optoelectronics. Electron microscopy is the primary tool used to study structural properties. Electron Energy Loss spectroscopy (EELS), Ellipsometry, Photoluminescence and Raman Spectroscopy are combined to investigate electronic band structures and bonding properties. The experiments are closely coupled with structural and property modeling and theory. A series of III-V-IV alloys have been synthesized by the reaction of M(SiH3)3 (M = P, As) with Al atoms from a Knudsen cell. In the AlPSi3 system, bonding configurations and elemental distributions are characterized by scanning transmission electron microscopy (STEM)/EELS and correlated with bulk optical behavior. The incorporation of N was achieved by addition of N(SiH3)3 into the reaction mixture yielding [Al(As1-xNx)]ySi5-2yalloys. A critical point analysis of spectroscopic ellipsometry data reveals the existence of direct optical transitions at energies as low as 2.5 eV, well below the lowest direct absorption edge of Si at 3.3 eV. The compositional dependence of the lowest direct gap and indirect gap in Ge1-ySny alloys extracted from room temperature photoluminescence indicates a crossover concentration of yc =0.073, much lower than virtual crystal approximation but agrees well with large atomic supercells predictions. A series of Ge-rich Ge1-x-ySixSny samples with a fixed 3-4% Si content and progressively increasing Sn content in the 4-10% range are grown and characterized by electron microscopy and photoluminescence. The ternary represents an attractive alternative to Ge1-ySny for applications in IR optoelectronic technologies.
ContributorsJiang, Liying (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Smith, David J. (Committee member) / Chizmeshya, Andrew V.G (Committee member) / Chamberlin, Ralph (Committee member) / Arizona State University (Publisher)
Created2014