Matching Items (335)
Filtering by

Clear all filters

147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148094-Thumbnail Image.png
Description

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By contrast, the twenty-first century is seeing the emergence of a world that is overloaded with information, largely shaped by an “unintentional press”—social media. Americans today rely on just a small concentration of private technology powerhouses exercising both economic and social influence over American society. This raises questions about censorship, access, and misinformation. While the First Amendment protects speech from government censorship only, First Amendment ideology is largely ingrained across American culture, including on social media. Technological advances arguably have made entry into the marketplace of ideas—a fundamental First Amendment doctrine—more accessible, but also more problematic for the average American, increasing his/her potential exposure to misinformation. <br/><br/>This thesis uses political and judicial frameworks to evaluate modern misinformation trends, social media platforms and current misinformation efforts, against the background of two misinformation accelerants in 2020, the COVID-19 pandemic and U.S. presidential election. Throughout history, times of hardship and intense fear have contributed to the shaping of First Amendment jurisprudence. Thus, this thesis looks at how fear can intensify the spread of misinformation and influence free speech values. Extensive research was conducted to provide the historical context behind relevant modern literature. This thesis then concludes with three solutions to misinformation that are supported by critical American free speech theory.

ContributorsCochrane, Kylie Marie (Author) / Russomanno, Joseph (Thesis director) / Roschke, Kristy (Committee member) / School of Public Affairs (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147896-Thumbnail Image.png
Description

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world.

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world. Best practices and key findings are identified in the research paper, and outlined into four parts in the handbook. The handbook serves as a compilation framework derived from my primary and secondary sources designed to provide anyone interested in becoming a content creator or social media influencer on steps they may take given what their predecessors have done to successfully launch their careers in the space.

ContributorsEsparza, Alexa (Author) / Giles, Charles (Thesis director) / Schlacter, John (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148212-Thumbnail Image.png
Description

Developed a business product with a team of CS students.

ContributorsPerri, Cole Thomas (Co-author) / Hernandez, Maximilliano (Co-author) / Schneider, Kaitlin (Co-author) / Call, Andy (Thesis director) / Hunt, Neil (Committee member) / School of Accountancy (Contributor) / Watts College of Public Service & Community Solut (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
149703-Thumbnail Image.png
Description
This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based

This dissertation studies routing in small-world networks such as grids plus long-range edges and real networks. Kleinberg showed that geography-based greedy routing in a grid-based network takes an expected number of steps polylogarithmic in the network size, thus justifying empirical efficiency observed beginning with Milgram. A counterpart for the grid-based model is provided; it creates all edges deterministically and shows an asymptotically matching upper bound on the route length. The main goal is to improve greedy routing through a decentralized machine learning process. Two considered methods are based on weighted majority and an algorithm of de Farias and Megiddo, both learning from feedback using ensembles of experts. Tests are run on both artificial and real networks, with decentralized spectral graph embedding supplying geometric information for real networks where it is not intrinsically available. An important measure analyzed in this work is overpayment, the difference between the cost of the method and that of the shortest path. Adaptive routing overtakes greedy after about a hundred or fewer searches per node, consistently across different network sizes and types. Learning stabilizes, typically at overpayment of a third to a half of that by greedy. The problem is made more difficult by eliminating the knowledge of neighbors' locations or by introducing uncooperative nodes. Even under these conditions, the learned routes are usually better than the greedy routes. The second part of the dissertation is related to the community structure of unannotated networks. A modularity-based algorithm of Newman is extended to work with overlapping communities (including considerably overlapping communities), where each node locally makes decisions to which potential communities it belongs. To measure quality of a cover of overlapping communities, a notion of a node contribution to modularity is introduced, and subsequently the notion of modularity is extended from partitions to covers. The final part considers a problem of network anonymization, mostly by the means of edge deletion. The point of interest is utility preservation. It is shown that a concentration on the preservation of routing abilities might damage the preservation of community structure, and vice versa.
ContributorsBakun, Oleg (Author) / Konjevod, Goran (Thesis advisor) / Richa, Andrea (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / Czygrinow, Andrzej (Committee member) / Arizona State University (Publisher)
Created2011
137612-Thumbnail Image.png
Description
This project is a case study of the how The New York Times metro desk and its journalists used Twitter throughout the duration of Hurricane Sandy. Hurricane Sandy affected the East Coast of the United States in late October and early November 2012. The study specifically focuses on a random

This project is a case study of the how The New York Times metro desk and its journalists used Twitter throughout the duration of Hurricane Sandy. Hurricane Sandy affected the East Coast of the United States in late October and early November 2012. The study specifically focuses on a random sampling of journalists' individual Twitter accounts as listed on the Times website directory and the official New York Times Metro account, which tweets breaking news in the New York City metro area of five New York City boroughs and New Jersey. This study categorizes the tweets according to types of tweet, with regard to whether individual tweets were "retweets" (reposting of another Twitter user's tweet) as well as the tweet's contents by categories relevant to the storm. This case study utilizes a qualitative approach. The categories were determined based on theme as a contextual analysis to synthesize information more broadly to be more inclusive of tweets occurring during the time frame of October 27 to November 3, 2012. The study then analyzes the tweets through the lens of the Society of Professional Journalists' Code of Ethics, a code voluntarily embraced by thousands of journalists as a guideline for ethical behavior in the profession, and the New York Times informal guidelines for its journalists' social media use. The study seeks to explore the ethical implications of Twitter's use during breaking news and how the message is delivered can be framed by as a tweet or retweet rather than shared through traditional journalism methods (via print or a news organization's website.)
ContributorsSteffan, Sara (Author) / Matera, Fran (Thesis director) / Thornton, Leslie (Committee member) / Gilpin, Dawn (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2013-05
147562-Thumbnail Image.png
Description

This thesis paper examines the challenges and opportunities that are present for nonprofit organizations seeking to engage in social media marketing. By analyzing the rise of social media as a prevalent tool for business-consumer outreach the paper proposes a dialogic approach to social media for nonprofits to effectively engage with

This thesis paper examines the challenges and opportunities that are present for nonprofit organizations seeking to engage in social media marketing. By analyzing the rise of social media as a prevalent tool for business-consumer outreach the paper proposes a dialogic approach to social media for nonprofits to effectively engage with their audiences, develop relationships with them, and mobilize them towards a common mission.

ContributorsPando, Isabella G (Author) / Moran, Stacey (Thesis director) / deLusé, Stephanie (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
ContributorsBhyravajosyula, Sai Vishnu Kiran (Author) / Syrotiuk, Violet R. (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2013
151500-Thumbnail Image.png
Description
Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding

Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding the location of node/link faults, i.e., the faulty nodes and links may be close to each other or far from each other. However, in many real life scenarios, there exists a strong spatial correlation among the faulty nodes and links. Such failures are often encountered in disaster situations, e.g., natural calamities or enemy attacks. In presence of such region-based faults, many of traditional network analysis and fault-tolerant metrics, that are valid under non-spatially correlated faults, are no longer applicable. To this effect, the main thrust of this research is design and analysis of robust networks in presence of such region-based faults. One important finding of this research is that if some prior knowledge is available on the maximum size of the region that might be affected due to a region-based fault, this piece of knowledge can be effectively utilized for resource efficient design of networks. It has been shown in this dissertation that in some scenarios, effective utilization of this knowledge may result in substantial saving is transmission power in wireless networks. In this dissertation, the impact of region-based faults on the connectivity of wireless networks has been studied and a new metric, region-based connectivity, is proposed to measure the fault-tolerance capability of a network. In addition, novel metrics, such as the region-based component decomposition number(RBCDN) and region-based largest component size(RBLCS) have been proposed to capture the network state, when a region-based fault disconnects the network. Finally, this dissertation presents efficient resource allocation techniques that ensure tolerance against region-based faults, in distributed file storage networks and data center networks.
ContributorsBanerjee, Sujogya (Author) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
152082-Thumbnail Image.png
Description
While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other

While network problems have been addressed using a central administrative domain with a single objective, the devices in most networks are actually not owned by a single entity but by many individual entities. These entities make their decisions independently and selfishly, and maybe cooperate with a small group of other entities only when this form of coalition yields a better return. The interaction among multiple independent decision-makers necessitates the use of game theory, including economic notions related to markets and incentives. In this dissertation, we are interested in modeling, analyzing, addressing network problems caused by the selfish behavior of network entities. First, we study how the selfish behavior of network entities affects the system performance while users are competing for limited resource. For this resource allocation domain, we aim to study the selfish routing problem in networks with fair queuing on links, the relay assignment problem in cooperative networks, and the channel allocation problem in wireless networks. Another important aspect of this dissertation is the study of designing efficient mechanisms to incentivize network entities to achieve certain system objective. For this incentive mechanism domain, we aim to motivate wireless devices to serve as relays for cooperative communication, and to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic approaches to problems in security and privacy domain. For this domain, we aim to analyze how a user could defend against a smart jammer, who can quickly learn about the user's transmission power. We also design mechanisms to encourage mobile phone users to participate in location privacy protection, in order to achieve k-anonymity.
ContributorsYang, Dejun (Author) / Xue, Guoliang (Thesis advisor) / Richa, Andrea (Committee member) / Sen, Arunabha (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013