Matching Items (221)
Filtering by

Clear all filters

147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148094-Thumbnail Image.png
Description

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By

Americans today face an age of information overload. With the evolution of Media 3.0, the internet, and the rise of Media 3.5—i.e., social media—relatively new communication technologies present pressing challenges for the First Amendment in American society. Twentieth century law defined freedom of expression, but in an information-limited world. By contrast, the twenty-first century is seeing the emergence of a world that is overloaded with information, largely shaped by an “unintentional press”—social media. Americans today rely on just a small concentration of private technology powerhouses exercising both economic and social influence over American society. This raises questions about censorship, access, and misinformation. While the First Amendment protects speech from government censorship only, First Amendment ideology is largely ingrained across American culture, including on social media. Technological advances arguably have made entry into the marketplace of ideas—a fundamental First Amendment doctrine—more accessible, but also more problematic for the average American, increasing his/her potential exposure to misinformation. <br/><br/>This thesis uses political and judicial frameworks to evaluate modern misinformation trends, social media platforms and current misinformation efforts, against the background of two misinformation accelerants in 2020, the COVID-19 pandemic and U.S. presidential election. Throughout history, times of hardship and intense fear have contributed to the shaping of First Amendment jurisprudence. Thus, this thesis looks at how fear can intensify the spread of misinformation and influence free speech values. Extensive research was conducted to provide the historical context behind relevant modern literature. This thesis then concludes with three solutions to misinformation that are supported by critical American free speech theory.

ContributorsCochrane, Kylie Marie (Author) / Russomanno, Joseph (Thesis director) / Roschke, Kristy (Committee member) / School of Public Affairs (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor, Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147896-Thumbnail Image.png
Description

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world.

This research covers the landscape of influencer marketing and combines it with the knowledge of 11 content creators and one social media specialist, ultimately producing an actionable handbook. Participants were asked questions that were intended to discover key strategies, level of difficulty, and overall insight into the content creator world. Best practices and key findings are identified in the research paper, and outlined into four parts in the handbook. The handbook serves as a compilation framework derived from my primary and secondary sources designed to provide anyone interested in becoming a content creator or social media influencer on steps they may take given what their predecessors have done to successfully launch their careers in the space.

ContributorsEsparza, Alexa (Author) / Giles, Charles (Thesis director) / Schlacter, John (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
137612-Thumbnail Image.png
Description
This project is a case study of the how The New York Times metro desk and its journalists used Twitter throughout the duration of Hurricane Sandy. Hurricane Sandy affected the East Coast of the United States in late October and early November 2012. The study specifically focuses on a random

This project is a case study of the how The New York Times metro desk and its journalists used Twitter throughout the duration of Hurricane Sandy. Hurricane Sandy affected the East Coast of the United States in late October and early November 2012. The study specifically focuses on a random sampling of journalists' individual Twitter accounts as listed on the Times website directory and the official New York Times Metro account, which tweets breaking news in the New York City metro area of five New York City boroughs and New Jersey. This study categorizes the tweets according to types of tweet, with regard to whether individual tweets were "retweets" (reposting of another Twitter user's tweet) as well as the tweet's contents by categories relevant to the storm. This case study utilizes a qualitative approach. The categories were determined based on theme as a contextual analysis to synthesize information more broadly to be more inclusive of tweets occurring during the time frame of October 27 to November 3, 2012. The study then analyzes the tweets through the lens of the Society of Professional Journalists' Code of Ethics, a code voluntarily embraced by thousands of journalists as a guideline for ethical behavior in the profession, and the New York Times informal guidelines for its journalists' social media use. The study seeks to explore the ethical implications of Twitter's use during breaking news and how the message is delivered can be framed by as a tweet or retweet rather than shared through traditional journalism methods (via print or a news organization's website.)
ContributorsSteffan, Sara (Author) / Matera, Fran (Thesis director) / Thornton, Leslie (Committee member) / Gilpin, Dawn (Committee member) / Barrett, The Honors College (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor)
Created2013-05
147562-Thumbnail Image.png
Description

This thesis paper examines the challenges and opportunities that are present for nonprofit organizations seeking to engage in social media marketing. By analyzing the rise of social media as a prevalent tool for business-consumer outreach the paper proposes a dialogic approach to social media for nonprofits to effectively engage with

This thesis paper examines the challenges and opportunities that are present for nonprofit organizations seeking to engage in social media marketing. By analyzing the rise of social media as a prevalent tool for business-consumer outreach the paper proposes a dialogic approach to social media for nonprofits to effectively engage with their audiences, develop relationships with them, and mobilize them towards a common mission.

ContributorsPando, Isabella G (Author) / Moran, Stacey (Thesis director) / deLusé, Stephanie (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

As social media and technology continue to impact the way students communicate and receive information, it is encouraged that university student-run organizations utilize social media platforms as a tool to further the development of their organizations. Social media platforms allow student organizations to network, promote awareness of their organizations, current

As social media and technology continue to impact the way students communicate and receive information, it is encouraged that university student-run organizations utilize social media platforms as a tool to further the development of their organizations. Social media platforms allow student organizations to network, promote awareness of their organizations, current campus events, and provide the opportunity to develop strong associations and interactions among students. Overall, student-run organizations currently utilize a wide variety of social media; however, frequently it is used without a clear understanding of its role and best practices, which could lead to a loss of effectiveness in their communication with students. Therefore, these factors suggest the need for university student-run organizations to recognize and understand the opportunities that effective social media strategies can bring as a communication tool to enhance student engagement.

ContributorsBastien, Kimberly L (Author) / Byrne, Jared (Thesis director) / LaRoche, Catherine-Ann (Committee member) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Department of Marketing (Contributor) / WPC Graduate Programs (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136118-Thumbnail Image.png
Description
Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the

Nucleic acids encode the information required to create life, and polymerases are the gatekeepers charged with maintaining the storage and flow of this genetic information. Synthetic biologists utilize this universal property to modify organisms and other systems to create unique traits or improve the function of others. One of the many realms in synthetic biology involves the study of biopolymers that do not exist naturally, which is known as xenobiology. Although life depends on two biopolymers for genetic storage, it may be possible that alternative molecules (xenonucleic acids – XNAs), could be used in their place in either a living or non-living system. However, implementation of an XNA based system requires the development of polymerases that can encode and decode information stored in these artificial polymers. A strategy called directed evolution is used to modify or alter the function of a protein of interest, but identifying mutations that can modify polymerase function is made problematic by their size and overall complexity. To reduce the amount of sequence space that needs to be samples when attempting to identify polymerase variants, we can try to make informed decisions about which amino acid residues may have functional roles in catalysis. An analysis of Family B polymerases has shown that residues which are involved in substrate specificity are often highly conserved both at the sequence and structure level. In order to validate the hypothesis that a strong correlation exists between structural conservation and catalytic activity, we have selected and mutated residues in the 9°N polymerase using a loss of function mutagenesis strategy based on a computational analysis of several homologues from a diverse range of taxa. Improvement of these models will hopefully lead to quicker identification of loci which are ideal engineering targets.
ContributorsHaeberle, Tyler Matthew (Author) / Chaput, John (Thesis director) / Chen, Julian (Committee member) / Larsen, Andrew (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136289-Thumbnail Image.png
Description
The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for

The Intercellular Adhesion Molecule-1 (ICAM-1, known as CD54) is a cell surface type I transmembrane glycoprotein with a molecular weight of 85 to 110 kDa. The primary function of ICAM-1 is to provide adhesion between endothelial cells and leukocytes after injury or stress. ICAM-1 is used as a receptor for various pathogens such as rhinoviruses, coxsackievirus A21 and the malaria parasite Plasmodium falciparum. ICAM-1 contains five immunoglobulin (Ig) domains in its long N-terminal extracellular region, a hydrophobic transmembrane domain, and a small C-terminal cytoplasmic domain. The Ig domains 1-2 and Ig domains 3-4-5 have been crystallized separately and their structure solved, however the full ICAM-1 structure has not been solved. Because ICAM-1 appears to be important for the mediation of cell-to-cell communication in physiological and pathological conditions, gaining a structural understanding of the full-length membrane anchored ICAM-1 is desirable. In this context, we have transiently expressed a plant-optimized gene encoding human ICAM-1 in Nicotiana benthamiana plants using the MagnICON expression system. The plant produced ICAM-1 is forming aggregates according to previous data. Thus, the current extraction and purification protocols have been altered to include TCEP, a reducing agent. The protein was purified using TALON metal affinity resin and partially characterized using various biochemical techniques. Our results show that there is a reduction in aggregation formation with the use of TCEP.
ContributorsPatel, Heeral (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kannan, Latha (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136320-Thumbnail Image.png
Description
Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction.

Variants of human butyrylcholinesterase (BChE) have been designed to have high cocaine hydrolytic activity. These variants have potential pharmacological applications toward treating cocaine overdose and addiction. These enzymes must be stable in the human body over fairly long periods of time in order to be effective at treating cocaine addiction. Recombinantly expressed BChE, however, tends to be in monomer or dimer oligomeric forms, which are far less stable than the tetramer form of the enzyme. When BChE is transiently expressed in Nicotiana benthamiana, it is produced mainly as monomers and dimers. However, when the protein is expressed through stable transformation, it produces much greater proportions of tetramers. Tetramerization of WT human plasma derived BChE is facilitated by the binding of a proline rich peptide. In this thesis, I investigated if a putative plant-derived analog of the mammalian proline-rich attachment domain caused stably expressed cocaine hydrolase variants of human BChE to undergo tetramerization. I also examined if co-expression of peptides with known proline-rich attachment domains further shifted the monomer-tetramer ratio toward the tetramer.
ContributorsKendle, Robert Player (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Larrimore, Kathy (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05