Matching Items (7)
Filtering by

Clear all filters

134144-Thumbnail Image.png
Description
The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest

The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest three pivots that could increase the chances of success for the future of Clippr. These three pivots are: mini salons, a concierge service, and an online resource. The idea for Clippr came from Sam, the team's friend's experience within the cosmetology industry. Sam graduated from cosmetology school in Phoenix and started his career as an assistant, which is the most common entry level position within the industry. Assistants do not get to work with clients and primarily do chores around the salon so he was not gaining any valuable experience. Eventually Sam found a position at a salon in Flagstaff. Unfortunately, he was not scheduled enough hours to pay his rent which forced him to travel back to Phoenix to cut his friend's and family's hair to make ends meet. Sam is not alone experiencing these issues within the industry, they are a common trend throughout the cosmetology field. It was found that there is a clear problem that affects every stylist: they struggle to reap the benefits of their self-employment. Most stylists become independent contractors where they are constrained by the salon's management. They are generally forced to work during the salon's hours of operations, promote specific products, adhere to a dress code, and forfeit their clients information. On the other hand, freelance workers outside of salons do enjoy greater freedoms within their work but with significant hurdles to overcome. They have a much harder time building a client base and face prohibitive start-up costs that make it harder to break into the industry.
ContributorsGottfried, Eric (Co-author) / Lynch, Adam (Co-author) / Sebold, Brent (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135081-Thumbnail Image.png
Description
Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a

Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a procedural generation algorithm that makes every encounter unique. This is then complemented with the path system where each enemy has unique rhythm patterns to give them different types of combat opportunities. In Last Hymn, the player arrives on a train at the World's End Train Station where they are greeted by a mysterious figure and guided to the Forest where they witness the end of the world and find themselves back at the train station before they left for the Forest. With only a limited amount of time per cycle of the world, the player must constantly weigh the opportunity cost of each decision, and only with careful thought, conviction, and tenacity will the player find a conclusion from the never ending cycle of rebirth. Blending both Shinto architecture and modern elements, Last Hymn used a "fantasy-chic" aesthetic in order to provide memorable locations and dissonant imagery. As the player explores they will struggle against puzzles and dynamic, rhythm based combat while trying to unravel the mystery of the world's looping time. Last Hymn was designed to develop innovative and dynamic new solutions for combat, exploration, and mapping. From this project all three team members were able to grow their software development and game design skills, achieving goals like improved level design, improved asset pipelines while simultaneously aiming to craft an experience that will be unforgettable for players everywhere.
ContributorsPinho, Tyler (Co-author) / Le, Jefferson (Co-author) / Spence, Curtis (Co-author) / Nelson, Brian (Thesis director) / Walker, Erin (Committee member) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135016-Thumbnail Image.png
Description
Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science

Programming is quickly becoming as ubiquitous a tool as general mathematics. The technology field is progressing at an exponential rate and driving this constantly evolving field forward requires competent software developers. Elementary and high school educational facilities do not currently express the importance of the computer science field. Computer science is not a required course in high school and nearly impossible to find at a middle school level. This lack of exposure to the field at a young age handicaps aspiring developers by not providing them with a foundation to build on when seeking a degree. This paper revolves around the development of a virtual world that encompasses principles of programming in a video game structure. The use of a virtual world-based game was chosen under the hypothesis that embedding programming instruction into a game through problem-based learning is more likely to engage young students than more traditional forms of instruction. Unlike the traditional method of instruction, a virtual world allows us to "deceive" the player into learning concepts by implicitly educating them through fun gameplay mechanics. In order to make our video game robust and self-sufficient, we have developed a predictive recursive descent parser that will validate any user-generated solutions to pre-defined logical platforming puzzles. Programming topics taught with these problems range from binary numbers to while and for loops.
ContributorsWest, Grant (Co-author) / Kury, Nizar (Co-author) / Nelson, Brian (Thesis director) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05