Matching Items (10)
Filtering by

Clear all filters

136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
133725-Thumbnail Image.png
Description
Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have

Detecting early signs of neurodegeneration is vital for measuring the efficacy of pharmaceuticals and planning treatments for neurological diseases. This is especially true for Amyotrophic Lateral Sclerosis (ALS) where differences in symptom onset can be indicative of the prognosis. Because it can be measured noninvasively, changes in speech production have been proposed as a promising indicator of neurological decline. However, speech changes are typically measured subjectively by a clinician. These perceptual ratings can vary widely between clinicians and within the same clinician on different patient visits, making clinical ratings less sensitive to subtle early indicators. In this paper, we propose an algorithm for the objective measurement of flutter, a quasi-sinusoidal modulation of fundamental frequency that manifests in the speech of some ALS patients. The algorithm detailed in this paper employs long-term average spectral analysis on the residual F0 track of a sustained phonation to detect the presence of flutter and is robust to longitudinal drifts in F0. The algorithm is evaluated on a longitudinal speech dataset of ALS patients at varying stages in their prognosis. Benchmarking with two stages of perceptual ratings provided by an expert speech pathologist indicate that the algorithm follows perceptual ratings with moderate accuracy and can objectively detect flutter in instances where the variability of the perceptual rating causes uncertainty.
ContributorsPeplinski, Jacob Scott (Author) / Berisha, Visar (Thesis director) / Liss, Julie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134144-Thumbnail Image.png
Description
The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest

The main objective of this thesis is to describe and analyze Clippr, an ASU startup founded by four students: Adam Lynch, Eric Gottfried, Ty Sivley, and Thomas Carpaneto. This paper will describe the formation of Clippr as a business, analyze the work and reasoning for dissolving the business, and suggest three pivots that could increase the chances of success for the future of Clippr. These three pivots are: mini salons, a concierge service, and an online resource. The idea for Clippr came from Sam, the team's friend's experience within the cosmetology industry. Sam graduated from cosmetology school in Phoenix and started his career as an assistant, which is the most common entry level position within the industry. Assistants do not get to work with clients and primarily do chores around the salon so he was not gaining any valuable experience. Eventually Sam found a position at a salon in Flagstaff. Unfortunately, he was not scheduled enough hours to pay his rent which forced him to travel back to Phoenix to cut his friend's and family's hair to make ends meet. Sam is not alone experiencing these issues within the industry, they are a common trend throughout the cosmetology field. It was found that there is a clear problem that affects every stylist: they struggle to reap the benefits of their self-employment. Most stylists become independent contractors where they are constrained by the salon's management. They are generally forced to work during the salon's hours of operations, promote specific products, adhere to a dress code, and forfeit their clients information. On the other hand, freelance workers outside of salons do enjoy greater freedoms within their work but with significant hurdles to overcome. They have a much harder time building a client base and face prohibitive start-up costs that make it harder to break into the industry.
ContributorsGottfried, Eric (Co-author) / Lynch, Adam (Co-author) / Sebold, Brent (Thesis director) / Balasooriya, Janaka (Committee member) / Computer Science and Engineering Program (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135455-Thumbnail Image.png
Description
The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that

The increasing presence and affordability of sensors provides the opportunity to make novel and creative designs for underserved markets like the legally blind. Here we explore how mathematical methods and device coordination can be utilized to improve the functionality of inexpensive proximity sensing electronics in order to create designs that are versatile, durable, low cost, and simple. Devices utilizing various acoustic and electromagnetic wave frequencies like ultrasonic rangefinders, radars, Lidar rangefinders, webcams, and infrared rangefinders and the concepts of Sensor Fusion, Frequency Modulated Continuous Wave radar, and Phased Arrays were explored. The effects of various factors on the propagation of different wave signals was also investigated. The devices selected to be incorporated into designs were the HB100 DRO Radar Doppler Sensor (as an FMCW radar), HC-SR04 Ultrasonic Sensor, and Maxbotix Ultrasonic Rangefinder \u2014 EZ3. Three designs were ultimately developed and dubbed the "Rad-Son Fusion", the "Tri-Beam Scanner", and the "Dual-Receiver Ranger". The "Rad-Son Fusion" employs the Sensor Fusion of an FMCW radar and Ultrasonic sensor through a weighted average of the distance reading from the two sensors. The "Tri-Beam Scanner" utilizes a beam-forming Digital Phased Array of ultrasonic sensors to scan its surroundings. The "Dual-Receiver Ranger" uses the convolved result from to two modified HC-SR04 sensors to determine the time of flight and ultimately an object's distance. After conducting hardware experiments to determine the feasibility of each design, the "Dual-Receiver Ranger" was prototyped and tested to demonstrate the potential of the concept. The designs were later compared based on proposed requirements and possible improvements and challenges associated with the designs are discussed.
ContributorsFeinglass, Joshua Forster (Author) / Goryll, Michael (Thesis director) / Reisslein, Martin (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148467-Thumbnail Image.png
Description

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first

This creative project is an extension of the work being done as part of Senior Design in<br/>developing the See-Through Car Pillar, a system designed to render the forward car pillars in a car<br/>invisible to the driver so they can have an unobstructed view utilizing displays, sensors, and a<br/>computer. The first half of the paper provides the motivation, design and progress of the project, <br/>while the latter half provides a literature survey on current automobile trends, the viability of the<br/>See-Through Car Pillar as a product in the market through case studies, and alternative designs and <br/>technologies that also might address the problem statement.

ContributorsRoy, Delwyn J (Author) / Thornton, Trevor (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132193-Thumbnail Image.png
Description
Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation.

Power spectral analysis is a fundamental aspect of signal processing used in the detection and \\estimation of various signal features. Signals spaced closely in frequency are problematic and lead analysts to miss crucial details surrounding the data. The Capon and Bartlett methods are non-parametric filterbank approaches to power spectrum estimation. The Capon algorithm is known as the "adaptive" approach to power spectrum estimation because its filter impulse responses are adapted to fit the characteristics of the data. The Bartlett method is known as the "conventional" approach to power spectrum estimation (PSE) and has a fixed deterministic filter. Both techniques rely on the Sample Covariance Matrix (SCM). The first objective of this project is to analyze the origins and characteristics of the Capon and Bartlett methods to understand their abilities to resolve signals closely spaced in frequency. Taking into consideration the Capon and Bartlett's reliance on the SCM, there is a novelty in combining these two algorithms using their cross-coherence. The second objective of this project is to analyze the performance of the Capon-Bartlett Cross Spectra. This study will involve Matlab simulations of known test cases and comparisons with approximate theoretical predictions.
ContributorsYoshiyama, Cassidy (Author) / Richmond, Christ (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132037-Thumbnail Image.png
Description
In the field of electronic music, haptic feedback is a crucial feature of digital musical instruments (DMIs) because it gives the musician a more immersive experience. This feedback might come in the form of a wearable haptic device that vibrates in response to music. Such advancements in the electronic music

In the field of electronic music, haptic feedback is a crucial feature of digital musical instruments (DMIs) because it gives the musician a more immersive experience. This feedback might come in the form of a wearable haptic device that vibrates in response to music. Such advancements in the electronic music field are applicable to the field of speech and hearing. More specifically, wearable haptic feedback devices can enhance the musical listening experience for people who use cochlear implant (CI) devices.
This Honors Thesis is a continuation of Prof. Lauren Hayes’s and Dr. Xin Luo’s research initiative, Haptic Electronic Audio Research into Musical Experience (HEAR-ME), which investigates how to enhance the musical listening experience for CI users using a wearable haptic system. The goals of this Honors Thesis are to adapt Prof. Hayes’s system code from the Max visual programming language into the C++ object-oriented programming language and to study the results of the developed C++ codes. This adaptation allows the system to operate in real-time and independently of a computer.
Towards these goals, two signal processing algorithms were developed and programmed in C++. The first algorithm is a thresholding method, which outputs a pulse of a predefined width when the input signal falls below some threshold in amplitude. The second algorithm is a root-mean-square (RMS) method, which outputs a pulse-width modulation signal with a fixed period and with a duty cycle dependent on the RMS of the input signal. The thresholding method was found to work best with speech, and the RMS method was found to work best with music. Future work entails the design of adaptive signal processing algorithms to allow the system to work more effectively on speech in a noisy environment and to emphasize a variety of elements in music.
ContributorsBonelli, Dominic Berlage (Author) / Papandreou-Suppappola, Antonia (Thesis director) / Hayes, Lauren (Thesis director, Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
166161-Thumbnail Image.png
Description

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor are elucidated in this document. Conceptual implementations of the optical

The idea for this thesis emerged from my senior design capstone project, A Wearable Threat Awareness System. A TFmini-S LiDAR sensor is used as one component of this system; the functionality of and signal processing behind this type of sensor are elucidated in this document. Conceptual implementations of the optical and digital stages of the signal processing is described in some detail. Following an introduction in which some general background knowledge about LiDAR is set forth, the body of the thesis is organized into two main sections. The first section focuses on optical processing to demodulate the received signal backscattered from the target object. This section describes the key steps in demodulation and illustrates them with computer simulation. A series of graphs capture the mathematical form of the signal as it progresses through the optical processing stages, ultimately yielding the baseband envelope which is converted to digital form for estimation of the leading edge of the pulse waveform using a digital algorithm. The next section is on range estimation. It describes the digital algorithm designed to estimate the arrival time of the leading edge of the optical pulse signal. This enables the pulse’s time of flight to be estimated, thus determining the distance between the LiDAR and the target. Performance of this algorithm is assessed with four different levels of noise. A calculation of the error in the leading-edge detection in terms of distance is also included to provide more insight into the algorithm’s accuracy.

ContributorsRidgway, Megan (Author) / Cochran, Douglas (Thesis director) / Aberle, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05