Matching Items (22)
Filtering by

Clear all filters

151537-Thumbnail Image.png
Description
Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements.
ContributorsNatesan Ramamurthy, Karthikeyan (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Karam, Lina (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
131987-Thumbnail Image.png
Description
Background: Natural Language Processing models have been trained to locate questions and answers in forum settings before but on topics such as cancer and diabetes. Also, studies have used filtering methods to understand themes in forum settings regarding opioid use. However, studies have not been conducted regarding training an NLP

Background: Natural Language Processing models have been trained to locate questions and answers in forum settings before but on topics such as cancer and diabetes. Also, studies have used filtering methods to understand themes in forum settings regarding opioid use. However, studies have not been conducted regarding training an NLP model to locate the questions people addicted to opioids are asking their peers and the answers they are receiving in forums. There are a variety of annotation tools available to help aid the data collection to train NLP models. For academic purposes, brat is the best tool for this purpose. This study will inform clinical practice by indicating what the inner thoughts of their patients who are addicted to opioids are so that they will be able to have more meaningful conversations during appointments that the patient may be too afraid to start.

Methods: The standard NLP process was used for this study in which a gold standard was reached through matched paired annotations of the forum text in brat and a neural network was trained on the content. Following the annotation process, adjudication occurred to increase the inter-annotator agreement. Categories were developed by local physicians to describe the questions and three pilots were run to test the best way to categorize the questions.

Results: The inter-annotator agreement, calculated via F-score, before adjudication for a 0.7 threshold was 0.378 for the annotation activity. After adjudication at a threshold of 0.7, the inter-annotator agreement increased to 0.560. Pilots 1, 2, and 3 of the categorization activity had an inter-annotator agreement of 0.375, 0.5, and 0.966 respectively.

Discussion: The inter-annotator agreement of the annotation activity may have been low initially since the annotators were students who may have not been as invested in the project as necessary to accurately annotate the text. Also, as everyone interprets the text slightly differently, it is possible that that contributed to the differences in the matched pairs’ annotations. The F-score variation for the categorization activity partially had to do with different delivery systems of the instructions and partially with the area of study of the participants. The first pilot did not mandate the use of the original context located in brat and the instructions were provided in the form of a downloadable document. The participants were computer science graduate students. The second pilot also had the instructions delivered via a document, but it was strongly suggested that the context be used to gain an understanding of the questions’ meanings. The participants were also computer science graduate students who upon a discussion of their results after the pilot expressed that they did not have a good understanding of the medical jargon in the posts. The final pilot used a combination of students with and without medical background, required to use the context, and included verbal instructions in combination with the written ones. The combination of these factors increased the F-score significantly. For a full-scale experiment, students with a medical background should be used to categorize the questions.
ContributorsPawlik, Katie (Author) / Devarakonda, Murthy (Thesis director) / Murcko, Anita (Committee member) / Green, Ellen (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
Description

This study measure the effect of temperature on a neural network's ability to detect and classify solar panel faults. It's well known that temperature negatively affects the power output of solar panels. This has consequences on their output data and our ability to distinguish between conditions via machine learning.

ContributorsVerch, Skyler (Author) / Spanias, Andreas (Thesis director) / Tepedelenlioğlu, Cihan (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-12
Description

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan.

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan. This would be very beneficial for overworked doctors, and could act as a potential crutch to aid in giving accurate diagnoses. For this thesis project, five different machine-learning algorithms were tested on two datasets containing 5,856 lung X-ray scans labeled as either “Pneumonia” or “Normal”. The goal was to determine which algorithm achieved the highest accuracy, as well as how preprocessing the data affected the accuracy of the models. The following supervised-learning methods were tested: support vector machines, logistic regression, decision trees, random forest, and a convolutional neural network. Each model was adjusted independently in order to achieve maximum performance before accuracy metrics were generated to pit the models against each other. Additionally, the effect of resizing images on model performance was investigated. Overall, a convolutional neural network proved to be the superior model for pneumonia detection, with a 91% accuracy. After resizing to 28x28, CNN accuracy decreased to 85%. The random forest model performed second best. The 28x28 PneumoniaMNIST dataset achieved higher accuracy using traditional machine learning models than the HD Chest X-Ray dataset. Resizing the Chest X-ray images had minimal effect on traditional model performance when resized to 28x28 or larger.

ContributorsVollkommer, Margie (Author) / Spanias, Andreas (Thesis director) / Sivaraman Narayanaswamy, Vivek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite

We present in this paper a method to compare scene classification accuracy of C-band Synthetic aperture radar (SAR) and optical images utilizing both classical and quantum computing algorithms. This REU study uses data from the Sentinel satellite. The dataset contains (i) synthetic aperture radar images collected from the Sentinel-1 satellite and (ii) optical images for the same area as the SAR images collected from the Sentinel-2 satellite. We utilize classical neural networks to classify four classes of images. We then use Quantum Convolutional Neural Networks and deep learning techniques to take advantage of machine learning to help the system train, learn, and identify at a higher classification accuracy. A hybrid Quantum-classical model that is trained on the Sentinel1-2 dataset is proposed, and the performance is then compared against the classical in terms of classification accuracy.

ContributorsMiller, Leslie (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
164864-Thumbnail Image.png
Description

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically

Quantum computing is an emerging and promising alternative to classical computing due to its ability to perform rapidly complex computations in a parallel manner. In this thesis, we aim to design an audio classification algorithm using a hybrid quantum-classical neural network. The thesis concentrated on healthcare applications and focused specifically on COVID-19 cough sound classification. All machine learning algorithms developed or implemented in this study were trained using features from Log Mel Spectrograms of healthy and COVID-19 coughing audio. Results are first presented from a study in which an ensemble of a VGG13, CRNN, GCNN, and GCRNN are utilized to classify audio using classical computing. Then, improved results attained using an optimized VGG13 neural network are presented. Finally, our quantum-classical hybrid neural network is designed and assessed in terms of accuracy and number of quantum layers and qubits. Comparisons are made to classical recurrent and convolutional neural networks.

ContributorsEsposito, Michael (Author) / Spanias, Andreas (Thesis director) / Uehara, Glen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-05
164938-Thumbnail Image.png
Description

In wireless communication systems, the process of data transmission includes the estimation of channels. Implementing machine learning in this process can reduce the amount of time it takes to estimate channels, thus, resulting in an increase of the system’s transmission throughput. This maximizes the performance of applications relating to device-to-device

In wireless communication systems, the process of data transmission includes the estimation of channels. Implementing machine learning in this process can reduce the amount of time it takes to estimate channels, thus, resulting in an increase of the system’s transmission throughput. This maximizes the performance of applications relating to device-to-device communications and 5G systems. However, applying machine learning algorithms to multi-base-station systems is not well understood in literature, which is the focus of this thesis.

ContributorsCosio, Karla (Author) / Ewaisha, Ahmed (Thesis director) / Spanias, Andreas (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
Description
Machine learning has been increasingly integrated into several new areas, namely those related to vision processing and language learning models. These implementations of these processes in new products have demanded increasingly more expensive memory usage and computational requirements. Microcontrollers can lower this increasing cost. However, implementation of such a system

Machine learning has been increasingly integrated into several new areas, namely those related to vision processing and language learning models. These implementations of these processes in new products have demanded increasingly more expensive memory usage and computational requirements. Microcontrollers can lower this increasing cost. However, implementation of such a system on a microcontroller is difficult and has to be culled appropriately in order to find the right balance between optimization of the system and allocation of resources present in the system. A proof of concept that these algorithms can be implemented on such as system will be attempted in order to find points of contention of the construction of such a system on such limited hardware, as well as the steps taken to enable the usage of machine learning onto a limited system such as the general purpose MSP430 from Texas Instruments.
ContributorsMalcolm, Ian (Author) / Allee, David (Thesis director) / Spanias, Andreas (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2024-05
187813-Thumbnail Image.png
Description
The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem

The presence of strategic agents can pose unique challenges to data collection and distributed learning. This dissertation first explores the social network dimension of data collection markets, and then focuses on how the strategic agents can be efficiently and effectively incentivized to cooperate in distributed machine learning frameworks. The first problem explores the impact of social learning in collecting and trading unverifiable information where a data collector purchases data from users through a payment mechanism. Each user starts with a personal signal which represents the knowledge about the underlying state the data collector desires to learn. Through social interactions, each user also acquires additional information from his neighbors in the social network. It is revealed that both the data collector and the users can benefit from social learning which drives down the privacy costs and helps to improve the state estimation for a given total payment budget. In the second half, a federated learning scheme to train a global learning model with strategic agents, who are not bound to contribute their resources unconditionally, is considered. Since the agents are not obliged to provide their true stochastic gradient updates and the server is not capable of directly validating the authenticity of reported updates, the learning process may reach a noncooperative equilibrium. First, the actions of the agents are assumed to be binary: cooperative or defective. If the cooperative action is taken, the agent sends a privacy-preserved version of stochastic gradient signal. If the defective action is taken, the agent sends an arbitrary uninformative noise signal. Furthermore, this setup is extended into the scenarios with more general actions spaces where the quality of the stochastic gradient updates have a range of discrete levels. The proposed methodology evaluates each agent's stochastic gradient according to a reference gradient estimate which is constructed from the gradients provided by other agents, and rewards the agent based on that evaluation.
ContributorsAkbay, Abdullah Basar (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Committee member) / Kosut, Oliver (Committee member) / Ewaisha, Ahmed (Committee member) / Arizona State University (Publisher)
Created2023