Matching Items (4)
Filtering by

Clear all filters

157308-Thumbnail Image.png
Description
Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational autoencoder, which serves as a nonlinear dimension reduction technique with regularization from the discriminator. Based on this, we propose a monitoring statistic efficiently capturing the change of the image data. The performance of the proposed AAE-based anomaly detection algorithm is validated through a simulation study and real case study for rolling defect detection.
ContributorsYeh, Huai-Ming (Author) / Yan, Hao (Thesis advisor) / Pan, Rong (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2019
153567-Thumbnail Image.png
Description
Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine

Gas turbine engine for aircraft propulsion represents one of the most physics-complex and safety-critical systems in the world. Its failure diagnostic is challenging due to the complexity of the model system, difficulty involved in practical testing and the infeasibility of creating homogeneous diagnostic performance evaluation criteria for the diverse engine makes.

NASA has designed and publicized a standard benchmark problem for propulsion engine gas path diagnostic that enables comparisons among different engine diagnostic approaches. Some traditional model-based approaches and novel purely data-driven approaches such as machine learning, have been applied to this problem.

This study focuses on a different machine learning approach to the diagnostic problem. Some most common machine learning techniques, such as support vector machine, multi-layer perceptron, and self-organizing map are used to help gain insight into the different engine failure modes from the perspective of big data. They are organically integrated to achieve good performance based on a good understanding of the complex dataset.

The study presents a new hierarchical machine learning structure to enhance classification accuracy in NASA's engine diagnostic benchmark problem. The designed hierarchical structure produces an average diagnostic accuracy of 73.6%, which outperforms comparable studies that were most recently published.
ContributorsWu, Qiyu (Author) / Si, Jennie (Thesis advisor) / Wu, Teresa (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2015
152768-Thumbnail Image.png
Description
In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact

In a healthcare setting, the Sterile Processing Department (SPD) provides ancillary services to the Operating Room (OR), Emergency Room, Labor & Delivery, and off-site clinics. SPD's function is to reprocess reusable surgical instruments and return them to their home departments. The management of surgical instruments and medical devices can impact patient safety and hospital revenue. Any time instrumentation or devices are not available or are not fit for use, patient safety and revenue can be negatively impacted. One step of the instrument reprocessing cycle is sterilization. Steam sterilization is the sterilization method used for the majority of surgical instruments and is preferred to immediate use steam sterilization (IUSS) because terminally sterilized items can be stored until needed. IUSS Items must be used promptly and cannot be stored for later use. IUSS is intended for emergency situations and not as regular course of action. Unfortunately, IUSS is used to compensate for inadequate inventory levels, scheduling conflicts, and miscommunications. If IUSS is viewed as an adverse event, then monitoring IUSS incidences can help healthcare organizations meet patient safety goals and financial goals along with aiding in process improvement efforts. This work recommends statistical process control methods to IUSS incidents and illustrates the use of control charts for IUSS occurrences through a case study and analysis of the control charts for data from a health care provider. Furthermore, this work considers the application of data mining methods to IUSS occurrences and presents a representative example of data mining to the IUSS occurrences. This extends the application of statistical process control and data mining in healthcare applications.
ContributorsWeart, Gail (Author) / Runger, George C. (Thesis advisor) / Li, Jing (Committee member) / Shunk, Dan (Committee member) / Arizona State University (Publisher)
Created2014
156053-Thumbnail Image.png
Description
Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster

Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster analysis to create product profiles based on which customer profiles are derived. Phase-2 then delves deep into each of the customer profiles and investigates causality behind their preference using Bayesian networks. This thesis illustrates the working of the framework using the case of Intel Corporation, world’s largest semiconductor manufacturing company.
ContributorsRam, Sudarshan Venkat (Author) / Kempf, Karl G. (Thesis advisor) / Wu, Teresa (Thesis advisor) / Ju, Feng (Committee member) / Arizona State University (Publisher)
Created2017