Matching Items (3)
Filtering by

Clear all filters

151537-Thumbnail Image.png
Description
Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements.
ContributorsNatesan Ramamurthy, Karthikeyan (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Karam, Lina (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
149306-Thumbnail Image.png
Description
Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing

Many methods have been proposed to estimate power system small signal stability, for either analysis or control, through identification of modal frequencies and their damping levels. Generally, estimation methods have been employed to assess small signal stability from collected field measurements. However, the challenge to using these methods in assessing field measurements is their ability to accurately estimate stability in the presence of noise. In this thesis a new method is developed which estimates the modal content of simulated and actual field measurements using orthogonal polynomials and the results are compared to other commonly used estimators. This new method estimates oscillatory performance by fitting an associate Hermite polynomial to time domain data and extrapolating its spectrum to identify small signal power system frequencies. Once the frequencies are identified, damping assessment is performed using a modified sliding window technique with the use of linear prediction (LP). Once the entire assessment is complete the measurements can be judged to be stable or unstable. Collectively, this new technique is known as the associate Hermite expansion (AHE) algorithm. Validation of the AHE method versus results from four other spectral estimators demonstrates the method's accuracy and modal estimation ability with and without the presence of noise. A Prony analysis, a Yule-Walker autoregressive algorithm, a second sliding window estimator and the Hilbert-Huang Transform method are used in comparative assessments in support of this thesis. Results from simulated and actual field measurements are used in the comparisons, as well as artificially generated simple signals. A search for actual field testing results performed by a utility was undertaken and a request was made to obtain the measurements of a brake insertion test. Comparison results show that the AHE method is accurate as compared to the other commonly used spectral estimators and its predictive capability exceeded the other estimators in the presence of Gaussian noise. As a result, the AHE method could be employed in areas including operations and planning analysis, post-mortem analysis, power system damping scheme design and other analysis areas.
ContributorsKokanos, Barrie Lee (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald (Committee member) / Farmer, Richard G (Committee member) / Ayyanar, Raja (Committee member) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2010
149313-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image

Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines.
ContributorsSaid, Asaad F (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Patel, Nital (Committee member) / Arizona State University (Publisher)
Created2010