Matching Items (12)
Filtering by

Clear all filters

153065-Thumbnail Image.png
Description
Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data

Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research proposes a unified model fusion based framework to handle the imbalanced classification with noisy dataset.

The phase I study focuses on the imbalanced classification problem. A generative classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of the imbalance data to improve the discrimination power on imbalanced classes. By fusing this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results show the effectiveness of CSG in dealing with imbalanced classification problems.

The phase II study expands the research scope to include the noisy dataset into the imbalanced classification problem. A model fusion based framework, K Nearest Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to model the training data as Gaussian mixtures and form adjustable confidence regions which are less sensitive to data imbalance and noise. Motivated by the K-nearest neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. Experimental results show KNG method greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset.

The phase III study addresses the issues of feature selection and parameter tuning of KNG algorithm. To further improve the performance of KNG algorithm, a Particle Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates model parameters and data features into the same particle vector and thus can search the best feature and parameter combination jointly. The experimental results show that PSO can greatly improve the performance of KNG with better accuracy and much lower computational cost.
ContributorsHe, Miao (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Silva, Alvin (Committee member) / Borror, Connie (Committee member) / Arizona State University (Publisher)
Created2014
153196-Thumbnail Image.png
Description
Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse

Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse learning models. A graph is a fundamental way to represent structural information of features. This dissertation focuses on graph-based sparse learning. The first part of this dissertation aims to integrate a graph into sparse learning to improve the performance. Specifically, the problem of feature grouping and selection over a given undirected graph is considered. Three models are proposed along with efficient solvers to achieve simultaneous feature grouping and selection, enhancing estimation accuracy. One major challenge is that it is still computationally challenging to solve large scale graph-based sparse learning problems. An efficient, scalable, and parallel algorithm for one widely used graph-based sparse learning approach, called anisotropic total variation regularization is therefore proposed, by explicitly exploring the structure of a graph. The second part of this dissertation focuses on uncovering the graph structure from the data. Two issues in graphical modeling are considered. One is the joint estimation of multiple graphical models using a fused lasso penalty and the other is the estimation of hierarchical graphical models. The key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which reduces the size of the optimization problem, dramatically reducing the computational cost.
ContributorsYang, Sen (Author) / Ye, Jieping (Thesis advisor) / Wonka, Peter (Thesis advisor) / Wang, Yalin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2014
154086-Thumbnail Image.png
Description
Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions.

Discriminative learning when training and test data belong to different distributions is a challenging and complex task. Often times we have very few or no labeled data from the test or target distribution, but we may have plenty of labeled data from one or multiple related sources with different distributions. Due to its capability of migrating knowledge from related domains, transfer learning has shown to be effective for cross-domain learning problems. In this dissertation, I carry out research along this direction with a particular focus on designing efficient and effective algorithms for BioImaging and Bilingual applications. Specifically, I propose deep transfer learning algorithms which combine transfer learning and deep learning to improve image annotation performance. Firstly, I propose to generate the deep features for the Drosophila embryo images via pretrained deep models and build linear classifiers on top of the deep features. Secondly, I propose to fine-tune the pretrained model with a small amount of labeled images. The time complexity and performance of deep transfer learning methodologies are investigated. Promising results have demonstrated the knowledge transfer ability of proposed deep transfer algorithms. Moreover, I propose a novel Robust Principal Component Analysis (RPCA) approach to process the noisy images in advance. In addition, I also present a two-stage re-weighting framework for general domain adaptation problems. The distribution of source domain is mapped towards the target domain in the first stage, and an adaptive learning model is proposed in the second stage to incorporate label information from the target domain if it is available. Then the proposed model is applied to tackle cross lingual spam detection problem at LinkedIn’s website. Our experimental results on real data demonstrate the efficiency and effectiveness of the proposed algorithms.
ContributorsSun, Qian (Author) / Ye, Jieping (Committee member) / Xue, Guoliang (Committee member) / Liu, Huan (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2015
156299-Thumbnail Image.png
Description
In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking

In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement.

Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients.

Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks.

Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.
ContributorsWang, Kun (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Zwart, Christine M. (Committee member) / Arizona State University (Publisher)
Created2018
157308-Thumbnail Image.png
Description
Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models

Image-based process monitoring has recently attracted increasing attention due to the advancement of the sensing technologies. However, existing process monitoring methods fail to fully utilize the spatial information of images due to their complex characteristics including the high dimensionality and complex spatial structures. Recent advancement of the unsupervised deep models such as a generative adversarial network (GAN) and generative adversarial autoencoder (AAE) has enabled to learn the complex spatial structures automatically. Inspired by this advancement, we propose an anomaly detection framework based on the AAE for unsupervised anomaly detection for images. AAE combines the power of GAN with the variational autoencoder, which serves as a nonlinear dimension reduction technique with regularization from the discriminator. Based on this, we propose a monitoring statistic efficiently capturing the change of the image data. The performance of the proposed AAE-based anomaly detection algorithm is validated through a simulation study and real case study for rolling defect detection.
ContributorsYeh, Huai-Ming (Author) / Yan, Hao (Thesis advisor) / Pan, Rong (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2019
156932-Thumbnail Image.png
Description
Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a

Transfer learning is a sub-field of statistical modeling and machine learning. It refers to methods that integrate the knowledge of other domains (called source domains) and the data of the target domain in a mathematically rigorous and intelligent way, to develop a better model for the target domain than a model using the data of the target domain alone. While transfer learning is a promising approach in various application domains, my dissertation research focuses on the particular application in health care, including telemonitoring of Parkinson’s Disease (PD) and radiomics for glioblastoma.

The first topic is a Mixed Effects Transfer Learning (METL) model that can flexibly incorporate mixed effects and a general-form covariance matrix to better account for similarity and heterogeneity across subjects. I further develop computationally efficient procedures to handle unknown parameters and large covariance structures. Domain relations, such as domain similarity and domain covariance structure, are automatically quantified in the estimation steps. I demonstrate METL in an application of smartphone-based telemonitoring of PD.

The second topic focuses on an MRI-based transfer learning algorithm for non-invasive surgical guidance of glioblastoma patients. Limited biopsy samples per patient create a challenge to build a patient-specific model for glioblastoma. A transfer learning framework helps to leverage other patient’s knowledge for building a better predictive model. When modeling a target patient, not every patient’s information is helpful. Deciding the subset of other patients from which to transfer information to the modeling of the target patient is an important task to build an accurate predictive model. I define the subset of “transferrable” patients as those who have a positive rCBV-cell density correlation, because a positive correlation is confirmed by imaging theory and the its respective literature.

The last topic is a Privacy-Preserving Positive Transfer Learning (P3TL) model. Although negative transfer has been recognized as an important issue by the transfer learning research community, there is a lack of theoretical studies in evaluating the risk of negative transfer for a transfer learning method and identifying what causes the negative transfer. My work addresses this issue. Driven by the theoretical insights, I extend Bayesian Parameter Transfer (BPT) to a new method, i.e., P3TL. The unique features of P3TL include intelligent selection of patients to transfer in order to avoid negative transfer and maintain patient privacy. These features make P3TL an excellent model for telemonitoring of PD using an At-Home Testing Device.
ContributorsYoon, Hyunsoo (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Hu, Leland S. (Committee member) / Arizona State University (Publisher)
Created2018
153643-Thumbnail Image.png
Description
Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in

Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background.

This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster.
ContributorsZhang, Min (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Pavlicek, William (Committee member) / Askin, Ronald (Committee member) / Arizona State University (Publisher)
Created2015
154099-Thumbnail Image.png
Description
Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.
ContributorsZou, Na (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa (Committee member) / Borror, Connie (Committee member) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2015
154578-Thumbnail Image.png
Description
Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling

Buildings consume nearly 50% of the total energy in the United States, which drives the need to develop high-fidelity models for building energy systems. Extensive methods and techniques have been developed, studied, and applied to building energy simulation and forecasting, while most of work have focused on developing dedicated modeling approach for generic buildings. In this study, an integrated computationally efficient and high-fidelity building energy modeling framework is proposed, with the concentration on developing a generalized modeling approach for various types of buildings. First, a number of data-driven simulation models are reviewed and assessed on various types of computationally expensive simulation problems. Motivated by the conclusion that no model outperforms others if amortized over diverse problems, a meta-learning based recommendation system for data-driven simulation modeling is proposed. To test the feasibility of the proposed framework on the building energy system, an extended application of the recommendation system for short-term building energy forecasting is deployed on various buildings. Finally, Kalman filter-based data fusion technique is incorporated into the building recommendation system for on-line energy forecasting. Data fusion enables model calibration to update the state estimation in real-time, which filters out the noise and renders more accurate energy forecast. The framework is composed of two modules: off-line model recommendation module and on-line model calibration module. Specifically, the off-line model recommendation module includes 6 widely used data-driven simulation models, which are ranked by meta-learning recommendation system for off-line energy modeling on a given building scenario. Only a selective set of building physical and operational characteristic features is needed to complete the recommendation task. The on-line calibration module effectively addresses system uncertainties, where data fusion on off-line model is applied based on system identification and Kalman filtering methods. The developed data-driven modeling framework is validated on various genres of buildings, and the experimental results demonstrate desired performance on building energy forecasting in terms of accuracy and computational efficiency. The framework could be easily implemented into building energy model predictive control (MPC), demand response (DR) analysis and real-time operation decision support systems.
ContributorsCui, Can (Author) / Wu, Teresa (Thesis advisor) / Weir, Jeffery D. (Thesis advisor) / Li, Jing (Committee member) / Fowler, John (Committee member) / Hu, Mengqi (Committee member) / Arizona State University (Publisher)
Created2016
155389-Thumbnail Image.png
Description
Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy

Large-scale $\ell_1$-regularized loss minimization problems arise in high-dimensional applications such as compressed sensing and high-dimensional supervised learning, including classification and regression problems. In many applications, it remains challenging to apply the sparse learning model to large-scale problems that have massive data samples with high-dimensional features. One popular and promising strategy is to scaling up the optimization problem in parallel. Parallel solvers run multiple cores on a shared memory system or a distributed environment to speed up the computation, while the practical usage is limited by the huge dimension in the feature space and synchronization problems.

In this dissertation, I carry out the research along the direction with particular focuses on scaling up the optimization of sparse learning for supervised and unsupervised learning problems. For the supervised learning, I firstly propose an asynchronous parallel solver to optimize the large-scale sparse learning model in a multithreading environment. Moreover, I propose a distributed framework to conduct the learning process when the dataset is distributed stored among different machines. Then the proposed model is further extended to the studies of risk genetic factors for Alzheimer's Disease (AD) among different research institutions, integrating a group feature selection framework to rank the top risk SNPs for AD. For the unsupervised learning problem, I propose a highly efficient solver, termed Stochastic Coordinate Coding (SCC), scaling up the optimization of dictionary learning and sparse coding problems. The common issue for the medical imaging research is that the longitudinal features of patients among different time points are beneficial to study together. To further improve the dictionary learning model, I propose a multi-task dictionary learning method, learning the different task simultaneously and utilizing shared and individual dictionary to encode both consistent and changing imaging features.
ContributorsLi, Qingyang (Author) / Ye, Jieping (Thesis advisor) / Xue, Guoliang (Thesis advisor) / He, Jingrui (Committee member) / Wang, Yalin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2017