Matching Items (2)
Filtering by

Clear all filters

135765-Thumbnail Image.png
Description
The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological

The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological signals from the brain and translate those signals into commands that control an external device such as a wheelchair or a robotic exoskeleton. Despite the potential for BCIs to vastly improve the lives of almost one billion people, one question arises: Just because we can use brain-computer interfaces, should we? The human brain is an embodiment of the mind, which is largely seen to determine a person's identity, so a number of ethical and philosophical concerns emerge over current and future uses of BCIs. These concerns include privacy, informed consent, autonomy, identity, enhancement, and justice. In this thesis, I focus on three of these issues: privacy, informed consent, and autonomy. The ultimate purpose of brain-computer interfaces is to provide patients with a greater degree of autonomy; thus, many of the ethical issues associated with BCIs are intertwined with autonomy. Currently, brain-computer interfaces exist mainly in the domain of medicine and medical research, but recently companies have started commercializing BCIs and providing them at affordable prices. These consumer-grade BCIs are primarily for non-medical purposes, and so they are beyond the scope of medicine. As BCIs become more widespread in the near future, it is crucial for interdisciplinary teams of ethicists, philosophers, engineers, and physicians to collaborate to address these ethical concerns now before BCIs become more commonplace.
ContributorsChu, Kevin Michael (Author) / Ankeny, Casey (Thesis director) / Robert, Jason (Committee member) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor) / School for the Future of Innovation in Society (Contributor) / Lincoln Center for Applied Ethics (Contributor)
Created2016-05
Description
Natural Language Processing (NLP) techniques have increasingly been used in finance, accounting, and economics research to analyze text-based information more efficiently and effectively than primarily human-centered methods. The literature is rich with computational textual analysis techniques applied to consistent annual or quarterly financial fillings, with promising results to identify similarities

Natural Language Processing (NLP) techniques have increasingly been used in finance, accounting, and economics research to analyze text-based information more efficiently and effectively than primarily human-centered methods. The literature is rich with computational textual analysis techniques applied to consistent annual or quarterly financial fillings, with promising results to identify similarities between documents and firms, in addition to further using this information in relation to other economic phenomena. Building upon the knowledge gained from previous research and extending the application of NLP methods to other categories of financial documents, this project explores financial credit contracts, better understanding the information provided through their textual data by assessing patterns and relationships between documents and firms. The main methods used throughout this project is Term Frequency-Inverse Document Frequency (to represent each document as a numerical vector), Cosine Similarity (to measure the similarity between contracts), and K-Means Clustering (to organically derive clusters of documents based on the text included in the contract itself). Using these methods, the dimensions analyzed are various grouping methodologies (external industry classifications and text derived classifications), various granularities (document-wise and firm-wise), various financial documents associated with a single firm (the relationship between credit contracts and 10-K product descriptions), and how various mean cosine similarity distributions change over time.
ContributorsLiu, Jeremy J (Author) / Wahal, Sunil (Thesis director) / Bharath, Sreedhar (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School for the Future of Innovation in Society (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05