Matching Items (12)
Filtering by

Clear all filters

137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
135765-Thumbnail Image.png
Description
The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological

The development of computational systems known as brain-computer interfaces (BCIs) offers the possibility of allowing individuals disabled by neurological disorders such as Amyotrophic Lateral Sclerosis (ALS) and ischemic stroke the ability to perform relatively complex tasks such as communicating with others and walking. BCIs are closed-loop systems that record physiological signals from the brain and translate those signals into commands that control an external device such as a wheelchair or a robotic exoskeleton. Despite the potential for BCIs to vastly improve the lives of almost one billion people, one question arises: Just because we can use brain-computer interfaces, should we? The human brain is an embodiment of the mind, which is largely seen to determine a person's identity, so a number of ethical and philosophical concerns emerge over current and future uses of BCIs. These concerns include privacy, informed consent, autonomy, identity, enhancement, and justice. In this thesis, I focus on three of these issues: privacy, informed consent, and autonomy. The ultimate purpose of brain-computer interfaces is to provide patients with a greater degree of autonomy; thus, many of the ethical issues associated with BCIs are intertwined with autonomy. Currently, brain-computer interfaces exist mainly in the domain of medicine and medical research, but recently companies have started commercializing BCIs and providing them at affordable prices. These consumer-grade BCIs are primarily for non-medical purposes, and so they are beyond the scope of medicine. As BCIs become more widespread in the near future, it is crucial for interdisciplinary teams of ethicists, philosophers, engineers, and physicians to collaborate to address these ethical concerns now before BCIs become more commonplace.
ContributorsChu, Kevin Michael (Author) / Ankeny, Casey (Thesis director) / Robert, Jason (Committee member) / Frow, Emma (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor) / School for the Future of Innovation in Society (Contributor) / Lincoln Center for Applied Ethics (Contributor)
Created2016-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan.

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan. This would be very beneficial for overworked doctors, and could act as a potential crutch to aid in giving accurate diagnoses. For this thesis project, five different machine-learning algorithms were tested on two datasets containing 5,856 lung X-ray scans labeled as either “Pneumonia” or “Normal”. The goal was to determine which algorithm achieved the highest accuracy, as well as how preprocessing the data affected the accuracy of the models. The following supervised-learning methods were tested: support vector machines, logistic regression, decision trees, random forest, and a convolutional neural network. Each model was adjusted independently in order to achieve maximum performance before accuracy metrics were generated to pit the models against each other. Additionally, the effect of resizing images on model performance was investigated. Overall, a convolutional neural network proved to be the superior model for pneumonia detection, with a 91% accuracy. After resizing to 28x28, CNN accuracy decreased to 85%. The random forest model performed second best. The 28x28 PneumoniaMNIST dataset achieved higher accuracy using traditional machine learning models than the HD Chest X-Ray dataset. Resizing the Chest X-ray images had minimal effect on traditional model performance when resized to 28x28 or larger.

ContributorsVollkommer, Margie (Author) / Spanias, Andreas (Thesis director) / Sivaraman Narayanaswamy, Vivek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources and information for beginner investors, which led us to design an app that provides clear and simple data, professional advice from financial analysts, and an advanced machine learning feature to predict stock trends. The "Simple Stocks" app also incorporates a voting feature, allowing users to see what other investors think about specific stocks. This functionality not only helps users make informed decisions but also encourages a sense of community, as users can learn from each other's experiences and opinions. By creating a supportive environment, the app promotes a more approachable and enjoyable experience for those who are new to investing. Following the successful release of the "Simple Stocks'' app on the App Store, our current objectives include expanding the user base and looking into various ways to generate income. One possible approach is to collaborate with other companies and establish an advertising-based revenue model, which would benefit both parties by attracting more users and increasing profits.

ContributorsKaruppiah, Meena (Author) / Kancherla, Sohan (Co-author) / Biyani, Saloni (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Zock, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
165924-Thumbnail Image.png
Description

The importance of nonverbal communication has been well established through several theories including Albert Mehrabian's 7-38-55 rule that proposes the respective importance of semantics, tonality and facial expressions in communication. Although several studies have examined how emotions are expressed and preceived in communication, there is limited research investigating the relationshi

The importance of nonverbal communication has been well established through several theories including Albert Mehrabian's 7-38-55 rule that proposes the respective importance of semantics, tonality and facial expressions in communication. Although several studies have examined how emotions are expressed and preceived in communication, there is limited research investigating the relationship between how emotions are expressed through semantics and facial expressions. Using a facial expression analysis software to deconstruct facial expressions into features and a K-Nearest-Neighbor (KNN) machine learning classifier, we explored if facial expressions can be clustered based on semantics. Our findings indicate that facial expressions can be clustered based on semantics and that there is an inherent congruence between facial expressions and semantics. These results are novel and significant in the context of nonverbal communication and are applicable to several areas of research including the vast field of emotion AI and machine emotional communication.

ContributorsEverett, Lauren (Author) / Coza, Aurel (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-05
Description

This honors thesis explores using machine learning technology to assist a patient's return to activity following a significant injury, specifically an anterior cruciate ligament (ACL) tear. The goal of the project was to determine if a machine learning model trained with ACL reconstruction (ACLR) applicable injury data would be able

This honors thesis explores using machine learning technology to assist a patient's return to activity following a significant injury, specifically an anterior cruciate ligament (ACL) tear. The goal of the project was to determine if a machine learning model trained with ACL reconstruction (ACLR) applicable injury data would be able to correctly predict which phase of return to sport a patient would be classified in when introduced to a new data set.

ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Artificial intelligence (AI) and machine learning (ML) algorithms are revolutionizing the field of healthcare by offering new opportunities for improved diagnosis and treatment planning. These technologies have the potential to transform the way medical professionals approach patient care by analyzing vast amounts of data, identifying patterns, and making predictions. This

Artificial intelligence (AI) and machine learning (ML) algorithms are revolutionizing the field of healthcare by offering new opportunities for improved diagnosis and treatment planning. These technologies have the potential to transform the way medical professionals approach patient care by analyzing vast amounts of data, identifying patterns, and making predictions. This overview highlights the current state of research and development in the field of AI and ML for diagnosis and treatment planning, as well as explore the ethical benefits and challenges associated with their implementation.
ContributorsShankar, Kruthy (Author) / Arquiza, Jose (Thesis director) / Sobrado, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05