Matching Items (13)
Filtering by

Clear all filters

153889-Thumbnail Image.png
Description
Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to individual flexions and extensions of the same digits. An array

Robust and stable decoding of neural signals is imperative for implementing a useful neuroprosthesis capable of carrying out dexterous tasks. A nonhuman primate (NHP) was trained to perform combined flexions of the thumb, index and middle fingers in addition to individual flexions and extensions of the same digits. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon action potential firing rates. The effect of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis, and Mutual Information Maximization was compared based on SVM classification performance. SVM classification was used to examine the functional parameters of (i) efficacy (ii) endurance to simulated failure and (iii) longevity of classification. The effect of using isolated-neuron and multi-unit firing rates was compared as the feature vector supplied to the SVM. The best classification performance was on post-implantation day 36, when using multi-unit firing rates the worst classification accuracy resulted from features selected with Wilcoxon signed-rank test (51.12 ± 0.65%) and the best classification accuracy resulted from Mutual Information Maximization (93.74 ± 0.32%). On this day when using single-unit firing rates, the classification accuracy from the Wilcoxon signed-rank test was 88.85 ± 0.61 % and Mutual Information Maximization was 95.60 ± 0.52% (degrees of freedom =10, level of chance =10%)
ContributorsPadmanaban, Subash (Author) / Greger, Bradley (Thesis advisor) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136814-Thumbnail Image.png
Description
The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics

The goal of this project was to explore biomimetics by creating a jellyfish flying device that uses propulsion of air to levitate while utilizing electromyography signals and infrared signals as mechanisms to control the device. Completing this project would require knowledge of biological signals, electrical circuits, computer programming, and physics to accomplish. An EMG sensor was used to obtain processed electrical signals produced from the muscles in the forearm and was then utilized to control the actuation speed of the tentacles. An Arduino microprocessor was used to translate the EMG signals to infrared blinking sequences which would propagate commands through a constructed circuit shield to the infrared receiver on jellyfish. The receiver will then translate the received IR sequence into actions. Then the flying device must produce enough thrust to propel the body upwards. The application of biomimetics would best test my skills as an engineer as well as provide a method of applying what I have learned over the duration of my undergraduate career.
ContributorsTsui, Jessica W (Author) / Muthuswamy, Jitteran (Thesis director) / Blain Christen, Jennifer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
155473-Thumbnail Image.png
Description
In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central

In the last 15 years, there has been a significant increase in the number of motor neural prostheses used for restoring limb function lost due to neurological disorders or accidents. The aim of this technology is to enable patients to control a motor prosthesis using their residual neural pathways (central or peripheral). Recent studies in non-human primates and humans have shown the possibility of controlling a prosthesis for accomplishing varied tasks such as self-feeding, typing, reaching, grasping, and performing fine dexterous movements. A neural decoding system comprises mainly of three components: (i) sensors to record neural signals, (ii) an algorithm to map neural recordings to upper limb kinematics and (iii) a prosthetic arm actuated by control signals generated by the algorithm. Machine learning algorithms that map input neural activity to the output kinematics (like finger trajectory) form the core of the neural decoding system. The choice of the algorithm is thus, mainly imposed by the neural signal of interest and the output parameter being decoded. The various parts of a neural decoding system are neural data, feature extraction, feature selection, and machine learning algorithm. There have been significant advances in the field of neural prosthetic applications. But there are challenges for translating a neural prosthesis from a laboratory setting to a clinical environment. To achieve a fully functional prosthetic device with maximum user compliance and acceptance, these factors need to be addressed and taken into consideration. Three challenges in developing robust neural decoding systems were addressed by exploring neural variability in the peripheral nervous system for dexterous finger movements, feature selection methods based on clinically relevant metrics and a novel method for decoding dexterous finger movements based on ensemble methods.
ContributorsPadmanaban, Subash (Author) / Greger, Bradley (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Crook, Sharon (Committee member) / Arizona State University (Publisher)
Created2017
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan.

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan. This would be very beneficial for overworked doctors, and could act as a potential crutch to aid in giving accurate diagnoses. For this thesis project, five different machine-learning algorithms were tested on two datasets containing 5,856 lung X-ray scans labeled as either “Pneumonia” or “Normal”. The goal was to determine which algorithm achieved the highest accuracy, as well as how preprocessing the data affected the accuracy of the models. The following supervised-learning methods were tested: support vector machines, logistic regression, decision trees, random forest, and a convolutional neural network. Each model was adjusted independently in order to achieve maximum performance before accuracy metrics were generated to pit the models against each other. Additionally, the effect of resizing images on model performance was investigated. Overall, a convolutional neural network proved to be the superior model for pneumonia detection, with a 91% accuracy. After resizing to 28x28, CNN accuracy decreased to 85%. The random forest model performed second best. The 28x28 PneumoniaMNIST dataset achieved higher accuracy using traditional machine learning models than the HD Chest X-Ray dataset. Resizing the Chest X-ray images had minimal effect on traditional model performance when resized to 28x28 or larger.

ContributorsVollkommer, Margie (Author) / Spanias, Andreas (Thesis director) / Sivaraman Narayanaswamy, Vivek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources and information for beginner investors, which led us to design an app that provides clear and simple data, professional advice from financial analysts, and an advanced machine learning feature to predict stock trends. The "Simple Stocks" app also incorporates a voting feature, allowing users to see what other investors think about specific stocks. This functionality not only helps users make informed decisions but also encourages a sense of community, as users can learn from each other's experiences and opinions. By creating a supportive environment, the app promotes a more approachable and enjoyable experience for those who are new to investing. Following the successful release of the "Simple Stocks'' app on the App Store, our current objectives include expanding the user base and looking into various ways to generate income. One possible approach is to collaborate with other companies and establish an advertising-based revenue model, which would benefit both parties by attracting more users and increasing profits.

ContributorsKaruppiah, Meena (Author) / Kancherla, Sohan (Co-author) / Biyani, Saloni (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Zock, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05