Matching Items (228)
Filtering by

Clear all filters

171440-Thumbnail Image.png
Description
Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence

Machine learning models and in specific, neural networks, are well known for being inscrutable in nature. From image classification tasks and generative techniques for data augmentation, to general purpose natural language models, neural networks are currently the algorithm of preference that is riding the top of the current artificial intelligence (AI) wave, having experienced the greatest boost in popularity above any other machine learning solution. However, due to their inscrutable design based on the optimization of millions of parameters, it is ever so complex to understand how their decision is influenced nor why (and when) they fail. While some works aim at explaining neural network decisions or making systems to be inherently interpretable the great majority of state of the art machine learning works prioritize performance over interpretability effectively becoming black boxes. Hence, there is still uncertainty in the decision boundaries of these already deployed solutions whose predictions should still be analyzed and taken with care. This becomes even more important when these models are used on sensitive scenarios such as medicine, criminal justice, settings with native inherent social biases or where egregious mispredictions can negatively impact the system or human trust down the line. Thus, the aim of this work is to provide a comprehensive analysis on the failure modes of the state of the art neural networks from three domains: large image classifiers and their misclassifications, generative adversarial networks when used for data augmentation and transformer networks applied to structured representations and reasoning about actions and change.
ContributorsOlmo Hernandez, Alberto (Author) / Kambhampati, Subbarao (Thesis advisor) / Liu, Huan (Committee member) / Li, Baoxin (Committee member) / Sengupta, Sailik (Committee member) / Arizona State University (Publisher)
Created2022
171883-Thumbnail Image.png
Description
With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way

With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way to address this problem is by generating realistic scenarios that complement and supplement actual system conditions. This thesis presents a methodology to create such correlated synthetic scenarios for load and renewable generation using machine learning. Machine learning algorithms need to have ample amounts of data available to them for training purposes. However, real-world datasets are often skewed in the distribution of the different events in the sample space. Data augmentation and scenario generation techniques are often utilized to complement the datasets with additional samples or by filling in missing data points. Datasets pertaining to the electric power system are especially prone to having very few samples for certain events, such as abnormal operating conditions, as they are not very common in an actual power system. A recurrent generative adversarial network (GAN) model is presented in this thesis to generate solar and load scenarios in a correlated manner using an actual dataset obtained from a power utility located in the U.S. Southwest. The generated solar and load profiles are verified both statistically and by implementation on a simulated test system, and the performance of correlated scenario generation vs. uncorrelated scenario generation is investigated. Given the interconnected relationships between the variables of the dataset, it is observed that correlated scenario generation results in more realistic synthetic scenarios, particularly for abnormal system conditions. When combined with actual but scarce abnormal conditions, the augmented dataset of system conditions provides a better platform for performing contingency studies for a more thorough reliability planning. The proposed scenario generation method is scalable and can be modified to work with different time-series datasets. Moreover, when the model is trained in a conditional manner, it can be used to synthesise any number of scenarios for the different events present in a given dataset. In summary, this thesis explores scenario generation using a recurrent conditional GAN and investigates the benefits of correlated generation compared to uncorrelated synthesis of profiles for the reliability planning problem of power systems.
ContributorsBilal, Muhammad (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2022
171921-Thumbnail Image.png
Description
With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving

With the bloom of machine learning, a massive amount of data has been used in the training process of machine learning. A tremendous amount of this data is user-generated data which allows the machine learning models to produce accurate results and personalized services. Nevertheless, I recognize the importance of preserving the privacy of individuals by protecting their information in the training process. One privacy attack that affects individuals is the private attribute inference attack. The private attribute attack is the process of inferring individuals' information that they do not explicitly reveal, such as age, gender, location, and occupation. The impacts of this go beyond knowing the information as individuals face potential risks. Furthermore, some applications need sensitive data to train the models and predict helpful insights and figuring out how to build privacy-preserving machine learning models will increase the capabilities of these applications.However, improving privacy affects the data utility which leads to a dilemma between privacy and utility. The utility of the data is measured by the quality of the data for different tasks. This trade-off between privacy and utility needs to be maintained to satisfy the privacy requirement and the result quality. To achieve more scalable privacy-preserving machine learning models, I investigate the privacy risks that affect individuals' private information in distributed machine learning. Even though the distributed machine learning has been driven by privacy concerns, privacy issues have been proposed in the literature which threaten individuals' privacy. In this dissertation, I investigate how to measure and protect individuals' privacy in centralized and distributed machine learning models. First, a privacy-preserving text representation learning is proposed to protect users' privacy that can be revealed from user generated data. Second, a novel privacy-preserving text classification for split learning is presented to improve users' privacy and retain high utility by defending against private attribute inference attacks.
ContributorsAlnasser, Walaa (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Shu, Kai (Committee member) / Bao, Tiffany (Committee member) / Arizona State University (Publisher)
Created2022
189297-Thumbnail Image.png
Description
This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other

This thesis encompasses a comprehensive research effort dedicated to overcoming the critical bottlenecks that hinder the current generation of neural networks, thereby significantly advancing their reliability and performance. Deep neural networks, with their millions of parameters, suffer from over-parameterization and lack of constraints, leading to limited generalization capabilities. In other words, the complex architecture and millions of parameters present challenges in finding the right balance between capturing useful patterns and avoiding noise in the data. To address these issues, this thesis explores novel solutions based on knowledge distillation, enabling the learning of robust representations. Leveraging the capabilities of large-scale networks, effective learning strategies are developed. Moreover, the limitations of dependency on external networks in the distillation process, which often require large-scale models, are effectively overcome by proposing a self-distillation strategy. The proposed approach empowers the model to generate high-level knowledge within a single network, pushing the boundaries of knowledge distillation. The effectiveness of the proposed method is not only demonstrated across diverse applications, including image classification, object detection, and semantic segmentation but also explored in practical considerations such as handling data scarcity and assessing the transferability of the model to other learning tasks. Another major obstacle hindering the development of reliable and robust models lies in their black-box nature, impeding clear insights into the contributions toward the final predictions and yielding uninterpretable feature representations. To address this challenge, this thesis introduces techniques that incorporate simple yet powerful deep constraints rooted in Riemannian geometry. These constraints confer geometric qualities upon the latent representation, thereby fostering a more interpretable and insightful representation. In addition to its primary focus on general tasks like image classification and activity recognition, this strategy offers significant benefits in real-world applications where data scarcity is prevalent. Moreover, its robustness in feature removal showcases its potential for edge applications. By successfully tackling these challenges, this research contributes to advancing the field of machine learning and provides a foundation for building more reliable and robust systems across various application domains.
ContributorsChoi, Hongjun (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Wenwen (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
189299-Thumbnail Image.png
Description
Multiple robotic arms collaboration is to control multiple robotic arms to collaborate with each other to work on the same task. During the collaboration, theagent is required to avoid all possible collisions between each part of the robotic arms. Thus, incentivizing collaboration and preventing collisions are the two principles which are followed

Multiple robotic arms collaboration is to control multiple robotic arms to collaborate with each other to work on the same task. During the collaboration, theagent is required to avoid all possible collisions between each part of the robotic arms. Thus, incentivizing collaboration and preventing collisions are the two principles which are followed by the agent during the training process. Nowadays, more and more applications, both in industry and daily lives, require at least two arms, instead of requiring only a single arm. A dual-arm robot satisfies much more needs of different types of tasks, such as folding clothes at home, making a hamburger in a grill or picking and placing a product in a warehouse. The applications done in this paper are all about object pushing. This thesis focuses on how to train the agent to learn pushing an object away as far as possible. Reinforcement Learning (RL), which is a type of Machine Learning (ML), is then utilized in this paper to train the agent to generate optimal actions. Deep Deterministic Policy Gradient (DDPG) and Hindsight Experience Replay (HER) are the two RL methods used in this thesis.
ContributorsLin, Steve (Author) / Ben Amor, Hani (Thesis advisor) / Redkar, Sangram (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2023
190707-Thumbnail Image.png
Description
Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even

Scientific research encompasses a variety of objectives, including measurement, making predictions, identifying laws, and more. The advent of advanced measurement technologies and computational methods has largely automated the processes of big data collection and prediction. However, the discovery of laws, particularly universal ones, still heavily relies on human intellect. Even with human intelligence, complex systems present a unique challenge in discerning the laws that govern them. Even the preliminary step, system description, poses a substantial challenge. Numerous metrics have been developed, but universally applicable laws remain elusive. Due to the cognitive limitations of human comprehension, a direct understanding of big data derived from complex systems is impractical. Therefore, simplification becomes essential for identifying hidden regularities, enabling scientists to abstract observations or draw connections with existing knowledge. As a result, the concept of macrostates -- simplified, lower-dimensional representations of high-dimensional systems -- proves to be indispensable. Macrostates serve a role beyond simplification. They are integral in deciphering reusable laws for complex systems. In physics, macrostates form the foundation for constructing laws and provide building blocks for studying relationships between quantities, rather than pursuing case-by-case analysis. Therefore, the concept of macrostates facilitates the discovery of regularities across various systems. Recognizing the importance of macrostates, I propose the relational macrostate theory and a machine learning framework, MacroNet, to identify macrostates and design microstates. The relational macrostate theory defines a macrostate based on the relationships between observations, enabling the abstraction from microscopic details. In MacroNet, I propose an architecture to encode microstates into macrostates, allowing for the sampling of microstates associated with a specific macrostate. My experiments on simulated systems demonstrate the effectiveness of this theory and method in identifying macrostates such as energy. Furthermore, I apply this theory and method to a complex chemical system, analyzing oil droplets with intricate movement patterns in a Petri dish, to answer the question, ``which combinations of parameters control which behavior?'' The macrostate theory allows me to identify a two-dimensional macrostate, establish a mapping between the chemical compound and the macrostate, and decipher the relationship between oil droplet patterns and the macrostate.
ContributorsZhang, Yanbo (Author) / Walker, Sara I (Thesis advisor) / Anbar, Ariel (Committee member) / Daniels, Bryan (Committee member) / Das, Jnaneshwar (Committee member) / Davies, Paul (Committee member) / Arizona State University (Publisher)
Created2023
190865-Thumbnail Image.png
Description
This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF)

This dissertation centers on treatment effect estimation in the field of causal inference, and aims to expand the toolkit for effect estimation when the treatment variable is binary. Two new stochastic tree-ensemble methods for treatment effect estimation in the continuous outcome setting are presented. The Accelerated Bayesian Causal Forrest (XBCF) model handles variance via a group-specific parameter, and the Heteroskedastic version of XBCF (H-XBCF) uses a separate tree ensemble to learn covariate-dependent variance. This work also contributes to the field of survival analysis by proposing a new framework for estimating survival probabilities via density regression. Within this framework, the Heteroskedastic Accelerated Bayesian Additive Regression Trees (H-XBART) model, which is also developed as part of this work, is utilized in treatment effect estimation for right-censored survival outcomes. All models have been implemented as part of the XBART R package, and their performance is evaluated via extensive simulation studies with appropriate sets of comparators. The contributed methods achieve similar levels of performance, while being orders of magnitude (sometimes as much as 100x) faster than comparator state-of-the-art methods, thus offering an exciting opportunity for treatment effect estimation in the large data setting.
ContributorsKrantsevich, Nikolay (Author) / Hahn, P Richard (Thesis advisor) / McCulloch, Robert (Committee member) / Zhou, Shuang (Committee member) / Lan, Shiwei (Committee member) / He, Jingyu (Committee member) / Arizona State University (Publisher)
Created2023
190885-Thumbnail Image.png
Description
In image classification tasks, images are often corrupted by spatial transformationslike translations and rotations. In this work, I utilize an existing method that uses the Fourier series expansion to generate a rotation and translation invariant representation of closed contours found in sketches, aiming to attenuate the effects of distribution shift caused

In image classification tasks, images are often corrupted by spatial transformationslike translations and rotations. In this work, I utilize an existing method that uses the Fourier series expansion to generate a rotation and translation invariant representation of closed contours found in sketches, aiming to attenuate the effects of distribution shift caused by the aforementioned transformations. I use this technique to transform input images into one of two different invariant representations, a Fourier series representation and a corrected raster image representation, prior to passing them to a neural network for classification. The architectures used include convolutional neutral networks (CNNs), multi-layer perceptrons (MLPs), and graph neural networks (GNNs). I compare the performance of this method to using data augmentation during training, the standard approach for addressing distribution shift, to see which strategy yields the best performance when evaluated against a test set with rotations and translations applied. I include experiments where the augmentations applied during training both do and do not accurately reflect the transformations encountered at test time. Additionally, I investigate the robustness of both approaches to high-frequency noise. In each experiment, I also compare training efficiency across models. I conduct experiments on three data sets, the MNIST handwritten digit dataset, a custom dataset (QD-3) consisting of three classes of geometric figures from the Quick, Draw! hand-drawn sketch dataset, and another custom dataset (QD-345) featuring sketches from all 345 classes found in Quick, Draw!. On the smaller problem space of MNIST and QD-3, the networks utilizing the Fourier-based technique to attenuate distribution shift perform competitively with the standard data augmentation strategy. On the more complex problem space of QD-345, the networks using the Fourier technique do not achieve the same test performance as correctly-applied data augmentation. However, they still outperform instances where train-time augmentations mis-predict test-time transformations, and outperform a naive baseline model where no strategy is used to attenuate distribution shift. Overall, this work provides evidence that strategies which attempt to directly mitigate distribution shift, rather than simply increasing the diversity of the training data, can be successful when certain conditions hold.
ContributorsWatson, Matthew (Author) / Yang, Yezhou YY (Thesis advisor) / Kerner, Hannah HK (Committee member) / Yang, Yingzhen YY (Committee member) / Arizona State University (Publisher)
Created2023
189385-Thumbnail Image.png
Description
Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of

Machine learning models are increasingly being deployed in real-world applications where their predictions are used to make critical decisions in a variety of domains. The proliferation of such models has led to a burgeoning need to ensure the reliability and safety of these models, given the potential negative consequences of model vulnerabilities. The complexity of machine learning models, along with the extensive data sets they analyze, can result in unpredictable and unintended outcomes. Model vulnerabilities may manifest due to errors in data input, algorithm design, or model deployment, which can have significant implications for both individuals and society. To prevent such negative outcomes, it is imperative to identify model vulnerabilities at an early stage in the development process. This will aid in guaranteeing the integrity, dependability, and safety of the models, thus mitigating potential risks and enabling the full potential of these technologies to be realized. However, enumerating vulnerabilities can be challenging due to the complexity of the real-world environment. Visual analytics, situated at the intersection of human-computer interaction, computer graphics, and artificial intelligence, offers a promising approach for achieving high interpretability of complex black-box models, thus reducing the cost of obtaining insights into potential vulnerabilities of models. This research is devoted to designing novel visual analytics methods to support the identification and analysis of model vulnerabilities. Specifically, generalizable visual analytics frameworks are instantiated to explore vulnerabilities in machine learning models concerning security (adversarial attacks and data perturbation) and fairness (algorithmic bias). In the end, a visual analytics approach is proposed to enable domain experts to explain and diagnose the model improvement of addressing identified vulnerabilities of machine learning models in a human-in-the-loop fashion. The proposed methods hold the potential to enhance the security and fairness of machine learning models deployed in critical real-world applications.
ContributorsXie, Tiankai (Author) / Maciejewski, Ross (Thesis advisor) / Liu, Huan (Committee member) / Bryan, Chris (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2023
Description

This study measure the effect of temperature on a neural network's ability to detect and classify solar panel faults. It's well known that temperature negatively affects the power output of solar panels. This has consequences on their output data and our ability to distinguish between conditions via machine learning.

ContributorsVerch, Skyler (Author) / Spanias, Andreas (Thesis director) / Tepedelenlioğlu, Cihan (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-12