Matching Items (14)
Filtering by

Clear all filters

136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133170-Thumbnail Image.png
Description
With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still

With microspheres growing in popularity as viable systems for targeted drug therapeutics, there exist a host of diseases and pathology induced side effects which could be treated with poly(lactic-co-glycolic acid) [PLGA] microparticle systems [6,10,12]. While PLGA systems are already applied in a wide variety the clinical setting [11], microparticles still have some way to go before they are viable systems for drug delivery. One of the main reasons for this is a lack of fabrication processes and systems which produce monodisperse particles while also being feasible for industrialization [10]. This honors thesis investigates various microparticle fabrication techniques \u2014 two using mechanical agitation and one using fluid dynamics \u2014 with the long term goal of incorporating norepinephrine and adenosine into the particles for metabolic stimulatory purposes. It was found that mechanical agitation processes lead to large values for dispersity and the polydispersity index while fluid dynamics methods have the potential to create more uniform and predictable outcomes. The research concludes by needing further investigation into methods and prototype systems involving fluid dynamics methods; however, these systems yield promising results for fabricating monodisperse particles which have the potential to encapsulate a wide variety of therapeutic drugs.
ContributorsRiley, Levi Louis (Author) / Vernon, Brent (Thesis director) / VanAuker, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and

The goal of this research project is to create a Mathcad template file capable of statistically modelling the effects of mean and standard deviation on a microparticle batch characterized by the log normal distribution model. Such a file can be applied during manufacturing to explore tolerances and increase cost and time effectiveness. Theoretical data for the time to 60% drug release and the slope and intercept of the log-log plot were collected and subjected to statistical analysis in JMP. Since the scope of this project focuses on microparticle surface degradation drug release with no drug diffusion, the characteristic variables relating to the slope (n = diffusional release exponent) and the intercept (k = kinetic constant) do not directly apply to the distribution model within the scope of the research. However, these variables are useful for analysis when the Mathcad template is applied to other types of drug release models.

ContributorsHan, Priscilla (Author) / Vernon, Brent (Thesis director) / Nickle, Jacob (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan.

Although relatively new technology, machine learning has rapidly demonstrated its many uses. One potential application of machine learning is the diagnosis of ailments in medical imaging. Ideally, through classification methods, a computer program would be able to identify different medical conditions when provided with an X-ray or other such scan. This would be very beneficial for overworked doctors, and could act as a potential crutch to aid in giving accurate diagnoses. For this thesis project, five different machine-learning algorithms were tested on two datasets containing 5,856 lung X-ray scans labeled as either “Pneumonia” or “Normal”. The goal was to determine which algorithm achieved the highest accuracy, as well as how preprocessing the data affected the accuracy of the models. The following supervised-learning methods were tested: support vector machines, logistic regression, decision trees, random forest, and a convolutional neural network. Each model was adjusted independently in order to achieve maximum performance before accuracy metrics were generated to pit the models against each other. Additionally, the effect of resizing images on model performance was investigated. Overall, a convolutional neural network proved to be the superior model for pneumonia detection, with a 91% accuracy. After resizing to 28x28, CNN accuracy decreased to 85%. The random forest model performed second best. The 28x28 PneumoniaMNIST dataset achieved higher accuracy using traditional machine learning models than the HD Chest X-Ray dataset. Resizing the Chest X-ray images had minimal effect on traditional model performance when resized to 28x28 or larger.

ContributorsVollkommer, Margie (Author) / Spanias, Andreas (Thesis director) / Sivaraman Narayanaswamy, Vivek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
ContributorsBernstein, Daniel (Author) / Pizziconi, Vincent (Thesis director) / Glattke, Kaycee (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources

This thesis project focuses on the creation and assessment of the "Simple Stocks" app, a straightforward investment tool specifically developed for people who are new to investing and find it challenging to comprehend the complexities of the stock market. We identified a significant gap in the availability of easy-to-understand resources and information for beginner investors, which led us to design an app that provides clear and simple data, professional advice from financial analysts, and an advanced machine learning feature to predict stock trends. The "Simple Stocks" app also incorporates a voting feature, allowing users to see what other investors think about specific stocks. This functionality not only helps users make informed decisions but also encourages a sense of community, as users can learn from each other's experiences and opinions. By creating a supportive environment, the app promotes a more approachable and enjoyable experience for those who are new to investing. Following the successful release of the "Simple Stocks'' app on the App Store, our current objectives include expanding the user base and looking into various ways to generate income. One possible approach is to collaborate with other companies and establish an advertising-based revenue model, which would benefit both parties by attracting more users and increasing profits.

ContributorsKaruppiah, Meena (Author) / Kancherla, Sohan (Co-author) / Biyani, Saloni (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Zock, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2023-05
165924-Thumbnail Image.png
Description

The importance of nonverbal communication has been well established through several theories including Albert Mehrabian's 7-38-55 rule that proposes the respective importance of semantics, tonality and facial expressions in communication. Although several studies have examined how emotions are expressed and preceived in communication, there is limited research investigating the relationshi

The importance of nonverbal communication has been well established through several theories including Albert Mehrabian's 7-38-55 rule that proposes the respective importance of semantics, tonality and facial expressions in communication. Although several studies have examined how emotions are expressed and preceived in communication, there is limited research investigating the relationship between how emotions are expressed through semantics and facial expressions. Using a facial expression analysis software to deconstruct facial expressions into features and a K-Nearest-Neighbor (KNN) machine learning classifier, we explored if facial expressions can be clustered based on semantics. Our findings indicate that facial expressions can be clustered based on semantics and that there is an inherent congruence between facial expressions and semantics. These results are novel and significant in the context of nonverbal communication and are applicable to several areas of research including the vast field of emotion AI and machine emotional communication.

ContributorsEverett, Lauren (Author) / Coza, Aurel (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor)
Created2022-05