Matching Items (46)
Filtering by

Clear all filters

164597-Thumbnail Image.png
Description
The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession

The goal of this research project is to determine how beneficial machine learning (ML) techniquescan be in predicting recessions. Past work has utilized a multitude of classification methods from Probit models to linear Support Vector Machines (SVMs) and obtained accuracies nearing 60-70%, where some models even predicted the Great Recession based off data from the previous 50 years. This paper will build on past work, by starting with less complex classification techniques that are more broadly used in recession forecasting and end by incorporating more complex ML models that produce higher accuracies than their more primitive counterparts. Many models were tested in this analysis and the findings here corroborate past work that the SVM methodology produces more accurate results than currently used probit models, but adds on that other ML models produced sufficient accuracy as well.
ContributorsHogan, Carter (Author) / McCulloch, Robert (Thesis director) / Pereira, Claudiney (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
165704-Thumbnail Image.png
Description
A key aspect of understanding the behavior of materials and structures is the analysis of how they fail. A key aspect of failure analysis is the discipline of fractography, which identifies features of interest on fracture surfaces with the goal of revealing insights on the nature of defects and microstructure,

A key aspect of understanding the behavior of materials and structures is the analysis of how they fail. A key aspect of failure analysis is the discipline of fractography, which identifies features of interest on fracture surfaces with the goal of revealing insights on the nature of defects and microstructure, and their interactions with the environment such as loading conditions. While fractography itself is a decades-old science, two aspects drive the need for this research: (i) Fractography remains a specialized domain of materials science where human subjectivity and experience play a large role in accurate determination of fracture modes and their relationship to the loading environment. (ii) Secondly, Additive Manufacturing (AM) is increasingly being used to create critical functional parts, where our understanding of failure mechanisms and how they relate to process and post-process conditions is nascent. Given these two challenges, this thesis conducted work to train convolutional neural network (CNN) models to analyze fracture surfaces in place of human experts and applies this to Inconel 718 specimens fabricated with the Laser Powder Bed Fusion (LPBF) process, as well as to traditional sheet metal specimens of the same alloy. This work intends to expand on previous work utilizing clustering methods through comparison of models developed using both manufacturing processes to demonstrate the effectiveness of the CNN approach, as well as elucidate insights into the nature of fracture modes in additively and traditionally manufactured thin-wall Inconel 718 specimens.
ContributorsVan Handel, Nicole (Author) / Bhate, Dhruv (Thesis director, Committee member) / Guo, Shenghan (Thesis director, Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
165711-Thumbnail Image.png
Description
The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the

The Population Receptive Field (pRF) model is widely used to predict the location (retinotopy) and size of receptive fields on the visual space. Doing so allows for the creation of a mapping from locations in the visual field to the associated groups of neurons in the cortical region (within the visual cortex of the brain). However, using the pRF model is very time consuming. Past research has focused on the creation of Convolutional Neural Networks (CNN) to mimic the pRF model in a fraction of the time, and they have worked well under highly controlled conditions. However, these models have not been thoroughly tested on real human data. This thesis focused on adapting one of these CNNs to accurately predict the retinotopy of a real human subject using a dataset from the Human Connectome Project. The results show promise towards creating a fully functioning CNN, but they also expose new challenges that must be overcome before the model could be used to predict the retinotopy of new human subjects.
ContributorsBurgard, Braeden (Author) / Wang, Yalin (Thesis director) / Ta, Duyan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
Description

The focus of my honors thesis is to find ways to use deep learning in tandem with tools in statistical mechanics to derive new ways to solve problems in biophysics. More specifically, I’ve been interested in finding transition pathways between two known states of a biomolecule. This is because understanding

The focus of my honors thesis is to find ways to use deep learning in tandem with tools in statistical mechanics to derive new ways to solve problems in biophysics. More specifically, I’ve been interested in finding transition pathways between two known states of a biomolecule. This is because understanding the mechanisms in which proteins fold and ligands bind is crucial to creating new medicines and understanding biological processes. In this thesis, I work with individuals in the Singharoy lab to develop a formulation to utilize reinforcement learning and sampling-based robotics planning to derive low free energy transition pathways between two known states. Our formulation uses Jarzynski’s equality and the stiff-spring approximation to obtain point estimates of energy, and construct an informed path search with atomistic resolution. At the core of this framework, is our first ever attempt we use a policy driven adaptive steered molecular dynamics (SMD) to control our molecular dynamics simulations. We show that both the reinforcement learning (RL) and robotics planning realization of the RL-guided framework can solve for pathways on toy analytical surfaces and alanine dipeptide.

ContributorsHo, Nicholas (Author) / Maciejewski, Ross (Thesis director) / Singharoy, Abhishek (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
Description

For my Honors Thesis, I decided to create an Artificial Intelligence Project to predict Fantasy NFL Football Points of players and team's defense. I created a Tensorflow Keras AI Regression model and created a Flask API that holds the AI model, and a Django Try-It Page for the user to

For my Honors Thesis, I decided to create an Artificial Intelligence Project to predict Fantasy NFL Football Points of players and team's defense. I created a Tensorflow Keras AI Regression model and created a Flask API that holds the AI model, and a Django Try-It Page for the user to use the model. These services are hosted on ASU's AWS service. In my Flask API, it actively gathers data from Pro-Football-Reference, then calculates the fantasy points. Let’s say the current year is 2022, then the model analyzes each player and trains on all data from available from 2000 to 2020 data, tests the data on 2021 data, and predicts for 2022 year. The Django Website asks the user to input the current year, then the user clicks the submit button runs the AI model, and the process explained earlier. Next, the user enters the player's name for the point prediction and the website predicts the last 5 rows with 4 being the previous fantasy points and the 5th row being the prediction.

ContributorsPanikulam, Caleb (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
Description
Deforestation in the Amazon rainforest has the potential to have devastating effects on ecosystems on both a local and global scale, making it one of the most environmentally threatening phenomena occurring today. In order to minimize deforestation in the Amazon and its consequences, it is helpful to analyze its occurrence

Deforestation in the Amazon rainforest has the potential to have devastating effects on ecosystems on both a local and global scale, making it one of the most environmentally threatening phenomena occurring today. In order to minimize deforestation in the Amazon and its consequences, it is helpful to analyze its occurrence using machine learning architectures such as the U-Net. The U-Net is a type of Fully Convolutional Network that has shown significant capability in performing semantic segmentation. It is built upon a symmetric series of downsampling and upsampling layers that propagate feature information into higher spatial resolutions, allowing for the precise identification of features on the pixel scale. Such an architecture is well-suited for identifying features in satellite imagery. In this thesis, we construct and train a U-Net to identify deforested areas in satellite imagery of the Amazon through semantic segmentation.
ContributorsGiel, Joshua (Author) / Douglas, Liam (Co-author) / Espanol, Malena (Thesis director) / Cochran, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Sustainability (Contributor)
Created2024-05