Matching Items (5)
Filtering by

Clear all filters

151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
150321-Thumbnail Image.png
Description
Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive

Many methods of passive flow control rely on changes to surface morphology. Roughening surfaces to induce boundary layer transition to turbulence and in turn delay separation is a powerful approach to lowering drag on bluff bodies. While the influence in broad terms of how roughness and other means of passive flow control to delay separation on bluff bodies is known, basic mechanisms are not well understood. Of particular interest for the current work is understanding the role of surface dimpling on boundary layers. A computational approach is employed and the study has two main goals. The first is to understand and advance the numerical methodology utilized for the computations. The second is to shed some light on the details of how surface dimples distort boundary layers and cause transition to turbulence. Simulations are performed of the flow over a simplified configuration: the flow of a boundary layer over a dimpled flat plate. The flow is modeled using an immersed boundary as a representation of the dimpled surface along with direct numerical simulation of the Navier-Stokes equations. The dimple geometry used is fixed and is that of a spherical depression in the flat plate with a depth-to-diameter ratio of 0.1. The dimples are arranged in staggered rows separated by spacing of the center of the bottom of the dimples by one diameter in both the spanwise and streamwise dimensions. The simulations are conducted for both two and three staggered rows of dimples. Flow variables are normalized at the inlet by the dimple depth and the Reynolds number is specified as 4000 (based on freestream velocity and inlet boundary layer thickness). First and second order statistics show the turbulent boundary layers correlate well to channel flow and flow of a zero pressure gradient flat plate boundary layers in the viscous sublayer and the buffer layer, but deviates further away from the wall. The forcing of transition to turbulence by the dimples is unlike the transition caused by a naturally transitioning flow, a small perturbation such as trip tape in experimental flows, or noise in the inlet condition for computational flows.
ContributorsGutierrez-Jensen, Jeremiah J (Author) / Squires, Kyle (Thesis advisor) / Hermann, Marcus (Committee member) / Gelb, Anne (Committee member) / Arizona State University (Publisher)
Created2011
155305-Thumbnail Image.png
Description
The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a

The central purpose of this work is to investigate the large-scale, coherent structures that exist in turbulent Rayleigh-Bénard convection (RBC) when the domain is large enough for the classical ”wind of turbulence” to break down. The study exclusively focuses on the structures that from when the RBC geometry is a cylinder. A series of visualization studies, Fourier analysis and proper orthogonal decomposition are employed to qualitatively and quantitatively inspect the large-scale structures’ length and time scales, spatial organization, and dynamic properties. The data in this study is generated by direct numerical simulation to resolve all the scales of turbulence in a 6.3 aspect-ratio cylinder at a Rayleigh number of 9.6 × 107 and Prandtl number of 6.7. Single and double point statistics are compared against experiments and several resolution criteria are examined to verify that the simulation has enough spatial and temporal resolution to adequately represent the physical system.

Large-scale structures are found to organize as roll-cells aligned along the cell’s side walls, with rays of vorticity pointing toward the core of the cell. Two different large- scale organizations are observed and these patterns are well described spatially and energetically by azimuthal Fourier modes with frequencies of 2 and 3. These Fourier modes are shown to be dominant throughout the entire domain, and are found to be the primary source for radial inhomogeneity by inspection of the energy spectra. The precision with which the azimuthal Fourier modes describe these large-scale structures shows that these structures influence a large range of length scales. Conversely, the smaller scale structures are found to be more sensitive to radial position within the Fourier modes showing a strong dependence on physical length scales.

Dynamics in the large-scale structures are observed including a transition in the global pattern followed by a net rotation about the central axis. The transition takes place over 10 eddy-turnover times and the subsequent rotation occurs at a rate of approximately 1.1 degrees per eddy-turnover. These time-scales are of the same order of magnitude as those seen in lower aspect-ratio RBC for similar events and suggests a similarity in dynamic events across different aspect-ratios.
ContributorsSakievich, Philip Sakievich (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Squires, Kyle (Committee member) / Herrmann, Marcus (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2017
149428-Thumbnail Image.png
Description
Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms

Passive flow control achieved by surface dimpling can be an effective strategy for reducing drag around bluff bodies - an example of substantial popular interest being the flow around a golf ball. While the general effect of dimples causing a delay of boundary layer separation is well known, the mechanisms contributing to this phenomena are subtle and not thoroughly understood. Numerical models offer a powerful approach for studying drag reduction, however simulation strategies are challenged by complex geometries, and in applications the introduction of ad hoc turbulence models which introduce additional uncertainty. These and other factors provide much of the motivation for the current study, which focused on the numerical simulations of the flow over a simplified configuration consisting of a dimpled flat plate. The principal goals of the work are to understand the performance of the numerical methodology, and gain insight into the underlying physics of the flow. Direct numerical simulation of the incompressible Navier-Stokes equations using a fractional step method was employed, with the dimpled flat plate represented using an immersed boundary method. The dimple geometry utilizes a fixed dimple aspect ratio, with dimples arranged in a single spanwise row. The grid sizes considered ranged from approximately 3 to 99 million grid points. Reynolds numbers of 3000 and 4000 based on the inlet laminar boundary layer thickness were simulated. A turbulent boundary layer was induced downstream of the dimples for Reynolds numbers which did not transition for the flow over an undimpled flat plate. First and second order statistics of the boundary layer that develops agree reasonably well with those for turbulent channel flow and flat plate boundary layers in the sublayer and buffer layers, but differ in the outer layer. Inspection of flow visualizations suggest that early transition is promoted by thinning of the boundary layer, initiation of shear layer instabilities over the dimples, flow separation and reattachment, and tripping of the boundary layer at the trailing edge of the dimples.
ContributorsMode, Jeffrey Michael (Author) / Squires, Kyle (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2010
153706-Thumbnail Image.png
Description
The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the

The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac flow without the requirement for optical access, as is required with traditional camera-based PIV methods.

The fundamentals of ultrasound PIV are introduced, including experimental methods for its implementation as well as a discussion on estimating and mitigating measurement error. Ultrasound PIV is then compared to optical PIV; this is a highly developed technique with proven accuracy; through rigorous examination it has become the “gold standard” of two-dimensional flow visualization. Results show good agreement between the two methods.

Using a mechanical left heart model, a multi-plane ultrasound PIV technique is introduced and applied to quantify a complex, three-dimensional flow that is analogous to the left intraventricular flow. Changes in ventricular flow dynamics due to the rotational orientation of mechanical heart valves are studied; the results demonstrate the importance of multi-plane imaging techniques when trying to assess the strongly three-dimensional intraventricular flow.

The potential use of ultrasound PIV as an early diagnosis technique is demonstrated through the development of a novel elasticity estimation technique. A finite element analysis routine is couple with an ensemble Kalman filter to allow for the estimation of material elasticity using forcing and displacement data derived from PIV. Results demonstrate that it is possible to estimate elasticity using forcing data derived from a PIV vector field, provided vector density is sufficient.
ContributorsWesterdale, John Curtis (Author) / Adrian, Ronald (Thesis advisor) / Belohlavek, Marek (Committee member) / Squires, Kyle (Committee member) / Trimble, Steve (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2015