Matching Items (279)
Filtering by

Clear all filters

136847-Thumbnail Image.png
DescriptionA group project working to implemented programs in the Town of Gilbert that build an entrepreneurial ecosystem within the town.
ContributorsCarneal, Tracy (Co-author) / Browning, Kelcey (Co-author) / Camoriano, James (Co-author) / Badulescu, Chris (Co-author) / Lindsey, Laura (Thesis director) / Riddel, Dana (Committee member) / Barrett, The Honors College (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor)
Created2014-05
135818-Thumbnail Image.png
Description
In A Comparative Analysis of Indoor and Greenhouse Cannabis Cultivation Systems, the two most common systems for commercial cannabis cultivation are compared using an operational and capital expenditure model combined with a collection of relevant industry sources to ascertain conclusions about the two systems' relative competitiveness. The cannabis industry is

In A Comparative Analysis of Indoor and Greenhouse Cannabis Cultivation Systems, the two most common systems for commercial cannabis cultivation are compared using an operational and capital expenditure model combined with a collection of relevant industry sources to ascertain conclusions about the two systems' relative competitiveness. The cannabis industry is one of the fastest growing nascent industries in the United States, and, as it evolves into a mature market, it will require more sophisticated considerations of resource deployment in order to maximize efficiency and maintain competitive advantage. Through drawing on leading assumptions by industry experts, we constructed a model of each system to demonstrate the dynamics of typical capital deployment and cost flow in each system. The systems are remarkably similar in many respects, with notable reductions in construction costs, electrical costs, and debt servicing for greenhouses. Although the differences are somewhat particular, they make up a large portion of the total costs and capital expenditures, causing a marked separation between the two systems in their attractiveness to operators. Besides financial efficiency, we examined quality control, security, and historical norms as relevant considerations for cannabis decision makers, using industry sources to reach conclusions about the validity of each of these concerns as a reason for resistance to implementation of greenhouse systems. In our opinion, these points of contention will become less pertinent with the technological and legislative changes surrounding market maturation. When taking into account the total mix of information, we conclude that the greenhouse system is positioned to become the preeminent method of production for future commercial cannabis cultivators.
ContributorsShouse, Corbin (Co-author) / Nichols, Nathaniel (Co-author) / Swenson, Dan (Thesis director) / Cassidy, Nancy (Committee member) / Feltham, Joe (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135828-Thumbnail Image.png
Description
"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella

"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella of impact investing, and then a focus on social impact bonds, an area of impact investing. A profile of Arizona's current educational rankings along with statistics are then presented, highlighting the need for an educational social impact bond to help increase achievement. The pitch then starts to focus particularly on high school drop outs and how by funding early childhood education the chances of a child graduating high school increase. An overview of existing early education social impact bonds that are enacted are then presented, followed by a possible structure for an early education social impact bond in Arizona. An analysis of the possible lifetime cost savings of investing in early childhood education are then presented, that are as a result of decreasing the amount of high school drop outs. Lastly, is a brief side-by-side comparison of the Arizona structure to the precedent social impact bonds.
ContributorsRodriguez, Karina (Author) / Simonson, Mark (Thesis director) / Trujillo, Gary (Committee member) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136098-Thumbnail Image.png
Description
In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or

In order to discover if Company X's current system of local trucking is the most efficient and cost-effective way to move freight between sites in the Western U.S., we will compare the current system to varying alternatives to see if there are potential avenues for Company X to create or implement an improved cost saving freight movement system.
ContributorsPicone, David (Co-author) / Krueger, Brandon (Co-author) / Harrison, Sarah (Co-author) / Way, Noah (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Barrett, The Honors College (Contributor) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / Economics Program in CLAS (Contributor) / School of Accountancy (Contributor) / W. P. Carey School of Business (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2015-05
136099-Thumbnail Image.png
Description
Company X is one of the world's largest semiconductor companies in the world, having a current market capitalization of 177.44 Billion USD, an enterprise value of 173.6 Billion USD, and generated 52.7 billion USD in revenue in fiscal year 2013. Recently, Company X has been looking to expand its Foundry

Company X is one of the world's largest semiconductor companies in the world, having a current market capitalization of 177.44 Billion USD, an enterprise value of 173.6 Billion USD, and generated 52.7 billion USD in revenue in fiscal year 2013. Recently, Company X has been looking to expand its Foundry business. The Foundry business in the semiconductor business is the actual process of making the chips. This process can be approached in several different ways by companies who need their chips built. A company, like TSMC, can be considered a pure-play company and only makes chips for other companies. A fabless company, like Apple, creates its own chip design and then allows another company to build them. It also uses other chip designs for its products, but outsources the building to another company. Lastly, the integrated device manufacturing companies like Samsung or Company X both design and build the chip. The foundry industry is a rather novel market for Company X because it owns less than 1 percent of the market. However, the industry itself is rather large, generating a total of 40 billion dollars in revenue annually, with expectations to have increasing year over year growth into the foreseeable future. The industry is fairly concentrated with TSMC being the top competitor, owning roughly 50 percent of the market with Samsung and Global Foundries lagging behind as notable competitors. It is a young industry and there is potential opportunity for companies that want to get into the business. For Company X, it is not only another market to get into, but also an added business segment to supplant their business segments that are forecasted to do poorly in the near future. This thesis will analyze the financial opportunity for Company X in the foundry space. Our final product is a series of P&L's which illustrate our findings. The results of our analysis were presented and defended in front of a panel of Company X managers and executives.
ContributorsJones, Trevor (Author) / Matiski, Matthew (Co-author) / Green, Alex (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136271-Thumbnail Image.png
Description
The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak

The OMFIT (One Modeling Framework for Integrated Tasks) modeling environment and the BRAINFUSE module have been deployed on the PPPL (Princeton Plasma Physics Laboratory) computing cluster with modifications that have rendered the application of artificial neural networks (NNs) to the TRANSP databases for the JET (Joint European Torus), TFTR (Tokamak Fusion Test Reactor), and NSTX (National Spherical Torus Experiment) devices possible through their use. This development has facilitated the investigation of NNs for predicting heat transport profiles in JET, TFTR, and NSTX, and has promoted additional investigations to discover how else NNs may be of use to scientists at PPPL. In applying NNs to the aforementioned devices for predicting heat transport, the primary goal of this endeavor is to reproduce the success shown in Meneghini et al. in using NNs for heat transport prediction in DIII-D. Being able to reproduce the results from is important because this in turn would provide scientists at PPPL with a quick and efficient toolset for reliably predicting heat transport profiles much faster than any existing computational methods allow; the progress towards this goal is outlined in this report, and potential additional applications of the NN framework are presented.
ContributorsLuna, Christopher Joseph (Author) / Tang, Wenbo (Thesis director) / Treacy, Michael (Committee member) / Orso, Meneghini (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136297-Thumbnail Image.png
Description
Dr. Dean Kashiwagi created a new thinking paradigm, Information Measurement Theory (IMT), which utilizes the understanding of natural laws to help individuals minimize decision-making and risk, which leads to reduced stress. In this new paradigm, any given situation can only have one unique outcome. The more information an individual has

Dr. Dean Kashiwagi created a new thinking paradigm, Information Measurement Theory (IMT), which utilizes the understanding of natural laws to help individuals minimize decision-making and risk, which leads to reduced stress. In this new paradigm, any given situation can only have one unique outcome. The more information an individual has for the given situation, the better they can predict the outcome. Using IMT can help correctly "predict the future" of any situation if given enough of the correct information. A prime example of using IMT would be: to correctly predict what a young woman will be like when she's older, simply look at the young woman's mother. In essence, if you can't fall in love with the mother, don't marry the young woman. The researchers are utilizing the concept of IMT and extrapolating it to the financial investing world. They researched different financial investing strategies and were able to come to the conclusion that a strategy utilizing IMT would yield the highest results for investors while minimizing stress. Investors using deductive logic to invest received, on average, 1300% more returns than investors who did not over a 25-year period. Where other investors made many decisions and were constantly stressed with the tribulations of the market, the investors utilizing IMT made one decision and made much more than other investors. The research confirms the stock market will continue to increase over time by looking at the history of the stock market from a birds-eye view. Throughout the existence of the stock market, there have been highs and lows, but at the end of the day, the market continues to break through new ceilings. Investing in the stock market can be a dark and scary place for the blind investor. Using the concept of IMT can eliminate that blindfold to reduce stress on investors while earning the highest financial return potential. Using the basis of IMT, the researchers predict the market will continue to increase in the future; in conclusion, the best investment strategy is to invest in blue chip stocks that have a history of past success, in order to capture secure growth with minimal risk and stress.
ContributorsBerns, Ryan (Co-author) / Ybanez, Julian (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Department of Marketing (Contributor) / W. P. Carey School of Business (Contributor)
Created2015-05
136409-Thumbnail Image.png
Description
Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public.

Twitter, the microblogging platform, has grown in prominence to the point that the topics that trend on the network are often the subject of the news and other traditional media. By predicting trends on Twitter, it could be possible to predict the next major topic of interest to the public. With this motivation, this paper develops a model for trends leveraging previous work with k-nearest-neighbors and dynamic time warping. The development of this model provides insight into the length and features of trends, and successfully generalizes to identify 74.3% of trends in the time period of interest. The model developed in this work provides understanding into why par- ticular words trend on Twitter.
ContributorsMarshall, Grant A (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
136386-Thumbnail Image.png
Description
With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount

With the development of technology, there has been a dramatic increase in the number of machine learning programs. These complex programs make conclusions and can predict or perform actions based off of models from previous runs or input information. However, such programs require the storing of a very large amount of data. Queries allow users to extract only the information that helps for their investigation. The purpose of this thesis was to create a system with two important components, querying and visualization. Metadata was stored in Sedna as XML and time series data was stored in OpenTSDB as JSON. In order to connect the two databases, the time series ID was stored as a metric in the XML metadata. Queries should be simple, flexible, and return all data that fits the query parameters. The query language used was an extension of XQuery FLWOR that added time series parameters. Visualization should be easily understood and be organized in a way to easily find important information and details. Because of the possibility of a large amount of data being returned from a query, a multivariate heat map was used to visualize the time series results. The two programs that the system performed queries on was Energy Plus and Epidemic Simulation Data Management System. By creating such a system, it would be easier for people of the project's fields to find the relationship between metadata that leads to the desired results over time. Over the time of the thesis project, the overall software was completed, however the software must be optimized in order to take the enormous amount of data expected from the system.
ContributorsTse, Adam Yusof (Author) / Candan, Selcuk (Thesis director) / Chen, Xilun (Committee member) / Barrett, The Honors College (Contributor) / School of Music (Contributor) / Computer Science and Engineering Program (Contributor)
Created2015-05