Matching Items (442)
Filtering by

Clear all filters

131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131527-Thumbnail Image.png
Description
Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic

Object localization is used to determine the location of a device, an important aspect of applications ranging from autonomous driving to augmented reality. Commonly-used localization techniques include global positioning systems (GPS), simultaneous localization and mapping (SLAM), and positional tracking, but all of these methodologies have drawbacks, especially in high traffic indoor or urban environments. Using recent improvements in the field of machine learning, this project proposes a new method of localization using networks with several wireless transceivers and implemented without heavy computational loads or high costs. This project aims to build a proof-of-concept prototype and demonstrate that the proposed technique is feasible and accurate.

Modern communication networks heavily depend upon an estimate of the communication channel, which represents the distortions that a transmitted signal takes as it moves towards a receiver. A channel can become quite complicated due to signal reflections, delays, and other undesirable effects and, as a result, varies significantly with each different location. This localization system seeks to take advantage of this distinctness by feeding channel information into a machine learning algorithm, which will be trained to associate channels with their respective locations. A device in need of localization would then only need to calculate a channel estimate and pose it to this algorithm to obtain its location.

As an additional step, the effect of location noise is investigated in this report. Once the localization system described above demonstrates promising results, the team demonstrates that the system is robust to noise on its location labels. In doing so, the team demonstrates that this system could be implemented in a continued learning environment, in which some user agents report their estimated (noisy) location over a wireless communication network, such that the model can be implemented in an environment without extensive data collection prior to release.
ContributorsChang, Roger (Co-author) / Kann, Trevor (Co-author) / Alkhateeb, Ahmed (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131529-Thumbnail Image.png
Description
RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to

RecyclePlus is an iOS mobile application that allows users to be knowledgeable in the realms of sustainability. It gives encourages users to be environmental responsible by providing them access to recycling information. In particular, it allows users to search up certain materials and learn about its recyclability and how to properly dispose of the material. Some searches will show locations of facilities near users that collect certain materials and dispose of the materials properly. This is a full stack software project that explores open source software and APIs, UI/UX design, and iOS development.
ContributorsTran, Nikki (Author) / Ganesh, Tirupalavanam (Thesis director) / Meuth, Ryan (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Department of Information Systems (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131537-Thumbnail Image.png
Description
At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment.

At present, the vast majority of human subjects with neurological disease are still diagnosed through in-person assessments and qualitative analysis of patient data. In this paper, we propose to use Topological Data Analysis (TDA) together with machine learning tools to automate the process of Parkinson’s disease classification and severity assessment. An automated, stable, and accurate method to evaluate Parkinson’s would be significant in streamlining diagnoses of patients and providing families more time for corrective measures. We propose a methodology which incorporates TDA into analyzing Parkinson’s disease postural shifts data through the representation of persistence images. Studying the topology of a system has proven to be invariant to small changes in data and has been shown to perform well in discrimination tasks. The contributions of the paper are twofold. We propose a method to 1) classify healthy patients from those afflicted by disease and 2) diagnose the severity of disease. We explore the use of the proposed method in an application involving a Parkinson’s disease dataset comprised of healthy-elderly, healthy-young and Parkinson’s disease patients.
ContributorsRahman, Farhan Nadir (Co-author) / Nawar, Afra (Co-author) / Turaga, Pavan (Thesis director) / Krishnamurthi, Narayanan (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133880-Thumbnail Image.png
Description
In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form

In this project, the use of deep neural networks for the process of selecting actions to execute within an environment to achieve a goal is explored. Scenarios like this are common in crafting based games such as Terraria or Minecraft. Goals in these environments have recursive sub-goal dependencies which form a dependency tree. An agent operating within these environments have access to low amounts of data about the environment before interacting with it, so it is crucial that this agent is able to effectively utilize a tree of dependencies and its environmental surroundings to make judgements about which sub-goals are most efficient to pursue at any point in time. A successful agent aims to minimizes cost when completing a given goal. A deep neural network in combination with Q-learning techniques was employed to act as the agent in this environment. This agent consistently performed better than agents using alternate models (models that used dependency tree heuristics or human-like approaches to make sub-goal oriented choices), with an average performance advantage of 33.86% (with a standard deviation of 14.69%) over the best alternate agent. This shows that machine learning techniques can be consistently employed to make goal-oriented choices within an environment with recursive sub-goal dependencies and low amounts of pre-known information.
ContributorsKoleber, Derek (Author) / Acuna, Ruben (Thesis director) / Bansal, Ajay (Committee member) / W.P. Carey School of Business (Contributor) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133901-Thumbnail Image.png
Description
This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally

This thesis dives into the world of artificial intelligence by exploring the functionality of a single layer artificial neural network through a simple housing price classification example while simultaneously considering its impact from a data management perspective on both the software and hardware level. To begin this study, the universally accepted model of an artificial neuron is broken down into its key components and then analyzed for functionality by relating back to its biological counterpart. The role of a neuron is then described in the context of a neural network, with equal emphasis placed on how it individually undergoes training and then for an entire network. Using the technique of supervised learning, the neural network is trained with three main factors for housing price classification, including its total number of rooms, bathrooms, and square footage. Once trained with most of the generated data set, it is tested for accuracy by introducing the remainder of the data-set and observing how closely its computed output for each set of inputs compares to the target value. From a programming perspective, the artificial neuron is implemented in C so that it would be more closely tied to the operating system and therefore make the collected profiler data more precise during the program's execution. The program is designed to break down each stage of the neuron's training process into distinct functions. In addition to utilizing more functional code, the struct data type is used as the underlying data structure for this project to not only represent the neuron but for implementing the neuron's training and test data. Once fully trained, the neuron's test results are then graphed to visually depict how well the neuron learned from its sample training set. Finally, the profiler data is analyzed to describe how the program operated from a data management perspective on the software and hardware level.
ContributorsRichards, Nicholas Giovanni (Author) / Miller, Phillip (Thesis director) / Meuth, Ryan (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133921-Thumbnail Image.png
Description
The National Basketball Association (NBA) is one of the Big Four Sporting Leagues of US Professional Sports. In recent years, the NBA has enjoyed milestone seasons in both attendance and television ratings, resulting in steady increases to both, over the previous decade. (Morgan, 2017) This surge can be attributed in

The National Basketball Association (NBA) is one of the Big Four Sporting Leagues of US Professional Sports. In recent years, the NBA has enjoyed milestone seasons in both attendance and television ratings, resulting in steady increases to both, over the previous decade. (Morgan, 2017) This surge can be attributed in part to the integration of "cultural recognition" initiatives and the overall message of inclusivity on the part of NBA franchises, with their respective promotions and advertisements such as television, social media, radio, etc. Heritage Nights, such as "Noche Latina," among other variants in the NBA, typically feature culturally influenced changes to team logos, giveaways, and other consumer offerings. In markets where Hispanics make up a significant percentage of the fan-base, such as Phoenix, NBA franchises such as the Phoenix Suns must ascertain the financial or perceptual impacts, associated with risks of stereotyping, offending or otherwise unintentionally alienating different categories of fans. To this end, data was collected from the local NBA franchises' fanbase, specifically Phoenix Suns season-ticket holders, and was statistically checked for significant relationships between both categories of fans and several different variables. This analysis found that only $192K in revenue is being missed through the investment of Heritage Nights, and that fan perceptions of stereotypical or offensive giveaways and practices have no significant effect on game or event attendance, despite the stereotypes toward giveaways and practices still being present. Implications of this study provide possible next steps for the Suns and continue to widen the scope of demographical sports marketing both in professional basketball and beyond.
ContributorsGibbens, Patrick Alexander (Author) / Eaton, John (Thesis director) / McIntosh, Daniel (Committee member) / Department of Supply Chain Management (Contributor) / School of Music (Contributor) / Department of Marketing (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134157-Thumbnail Image.png
Description
This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of

This paper details the specification and implementation of a single-machine blockchain simulator. It also includes a brief introduction on the history & underlying concepts of blockchain, with explanations on features such as decentralization, openness, trustlessness, and consensus. The introduction features a brief overview of public interest and current implementations of blockchain before stating potential use cases for blockchain simulation software. The paper then gives a brief literature review of blockchain's role, both as a disruptive technology and a foundational technology. The literature review also addresses the potential and difficulties regarding the use of blockchain in Internet of Things (IoT) networks, and also describes the limitations of blockchain in general regarding computational intensity, storage capacity, and network architecture. Next, the paper gives the specification for a generic blockchain structure, with summaries on the behaviors and purposes of transactions, blocks, nodes, miners, public & private key cryptography, signature validation, and hashing. Finally, the author gives an overview of their specific implementation of the blockchain using C/C++ and OpenSSL. The overview includes a brief description of all the classes and data structures involved in the implementation, including their function and behavior. While the implementation meets the requirements set forward in the specification, the results are more qualitative and intuitive, as time constraints did not allow for quantitative measurements of the network simulation. The paper concludes by discussing potential applications for the simulator, and the possibility for future hardware implementations of blockchain.
ContributorsRauschenbach, Timothy Rex (Author) / Vrudhula, Sarma (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
Description
This paper is intended to identify a correlation between the winning percentage of sports teams in the four major professional sports leagues in the United States and the GDP per capita of their respective cities. We initially compiled fifteen years of franchise performance along with economic data from the Federal

This paper is intended to identify a correlation between the winning percentage of sports teams in the four major professional sports leagues in the United States and the GDP per capita of their respective cities. We initially compiled fifteen years of franchise performance along with economic data from the Federal Reserve Bank of St. Louis to analyze this relationship. After converting the data into a language recognized by Stata, the regression tool we used, we ran multiple regressions to find relevant correlations based off of our inputs. This paper will show the value of the economic impact of strong or weak performance throughout various economic cycles through data analysis and conclusions drawn from the results of the regression analysis.
ContributorsAndl, Tyler (Co-author) / Shirk, Brandon (Co-author) / Goegan, Brian (Thesis director) / Eaton, John (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134286-Thumbnail Image.png
Description
Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be

Many researchers aspire to create robotics systems that assist humans in common office tasks, especially by taking over delivery and messaging tasks. For meaningful interactions to take place, a mobile robot must be able to identify the humans it interacts with and communicate successfully with them. It must also be able to successfully navigate the office environment. While mobile robots are well suited for navigating and interacting with elements inside a deterministic office environment, attempting to interact with human beings in an office environment remains a challenge due to the limits on the amount of cost-efficient compute power onboard the robot. In this work, I propose the use of remote cloud services to offload intensive interaction tasks. I detail the interactions required in an office environment and discuss the challenges faced when implementing a human-robot interaction platform in a stochastic office environment. I also experiment with cloud services for facial recognition, speech recognition, and environment navigation and discuss my results. As part of my thesis, I have implemented a human-robot interaction system utilizing cloud APIs into a mobile robot, enabling it to navigate the office environment, identify humans within the environment, and communicate with these humans.
Created2017-05