Matching Items (39)
Filtering by

Clear all filters

152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151537-Thumbnail Image.png
Description
Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses

Effective modeling of high dimensional data is crucial in information processing and machine learning. Classical subspace methods have been very effective in such applications. However, over the past few decades, there has been considerable research towards the development of new modeling paradigms that go beyond subspace methods. This dissertation focuses on the study of sparse models and their interplay with modern machine learning techniques such as manifold, ensemble and graph-based methods, along with their applications in image analysis and recovery. By considering graph relations between data samples while learning sparse models, graph-embedded codes can be obtained for use in unsupervised, supervised and semi-supervised problems. Using experiments on standard datasets, it is demonstrated that the codes obtained from the proposed methods outperform several baseline algorithms. In order to facilitate sparse learning with large scale data, the paradigm of ensemble sparse coding is proposed, and different strategies for constructing weak base models are developed. Experiments with image recovery and clustering demonstrate that these ensemble models perform better when compared to conventional sparse coding frameworks. When examples from the data manifold are available, manifold constraints can be incorporated with sparse models and two approaches are proposed to combine sparse coding with manifold projection. The improved performance of the proposed techniques in comparison to sparse coding approaches is demonstrated using several image recovery experiments. In addition to these approaches, it might be required in some applications to combine multiple sparse models with different regularizations. In particular, combining an unconstrained sparse model with non-negative sparse coding is important in image analysis, and it poses several algorithmic and theoretical challenges. A convex and an efficient greedy algorithm for recovering combined representations are proposed. Theoretical guarantees on sparsity thresholds for exact recovery using these algorithms are derived and recovery performance is also demonstrated using simulations on synthetic data. Finally, the problem of non-linear compressive sensing, where the measurement process is carried out in feature space obtained using non-linear transformations, is considered. An optimized non-linear measurement system is proposed, and improvements in recovery performance are demonstrated in comparison to using random measurements as well as optimized linear measurements.
ContributorsNatesan Ramamurthy, Karthikeyan (Author) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Karam, Lina (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
151544-Thumbnail Image.png
Description
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse

Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. Sparse methods lead to parsimonious models, in addition to being efficient for large scale learning. In sparse modeling, data is represented as a sparse linear combination of atoms from a "dictionary" matrix. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. With the growing need to adapt models for large scale data, it is important to design dictionaries that can model the entire data space and not just the samples considered. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. Theoretical aspects of learning such as algorithmic stability and generalization are considered, and ensemble learning is incorporated for effective large scale learning. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Using object recognition experiments on standard datasets it is shown that the proposed approaches outperform other sparse coding-based recognition frameworks. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Using sparse codes to define the relation between data samples can lead to a more robust graph embedding for unsupervised clustering. By performing discriminative embedding using sparse coding-based graphs, an algorithm for measuring the glomerular number in kidney MRI images is developed. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
ContributorsJayaraman Thiagarajan, Jayaraman (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
150924-Thumbnail Image.png
Description
Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The

Approximately 1% of the world population suffers from epilepsy. Continuous long-term electroencephalographic (EEG) monitoring is the gold-standard for recording epileptic seizures and assisting in the diagnosis and treatment of patients with epilepsy. However, this process still requires that seizures are visually detected and marked by experienced and trained electroencephalographers. The motivation for the development of an automated seizure detection algorithm in this research was to assist physicians in such a laborious, time consuming and expensive task. Seizures in the EEG vary in duration (seconds to minutes), morphology and severity (clinical to subclinical, occurrence rate) within the same patient and across patients. The task of seizure detection is also made difficult due to the presence of movement and other recording artifacts. An early approach towards the development of automated seizure detection algorithms utilizing both EEG changes and clinical manifestations resulted to a sensitivity of 70-80% and 1 false detection per hour. Approaches based on artificial neural networks have improved the detection performance at the cost of algorithm's training. Measures of nonlinear dynamics, such as Lyapunov exponents, have been applied successfully to seizure prediction. Within the framework of this MS research, a seizure detection algorithm based on measures of linear and nonlinear dynamics, i.e., the adaptive short-term maximum Lyapunov exponent (ASTLmax) and the adaptive Teager energy (ATE) was developed and tested. The algorithm was tested on long-term (0.5-11.7 days) continuous EEG recordings from five patients (3 with intracranial and 2 with scalp EEG) and a total of 56 seizures, producing a mean sensitivity of 93% and mean specificity of 0.048 false positives per hour. The developed seizure detection algorithm is data-adaptive, training-free and patient-independent. It is expected that this algorithm will assist physicians in reducing the time spent on detecting seizures, lead to faster and more accurate diagnosis, better evaluation of treatment, and possibly to better treatments if it is incorporated on-line and real-time with advanced neuromodulation therapies for epilepsy.
ContributorsVenkataraman, Vinay (Author) / Jassemidis, Leonidas (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2012
150788-Thumbnail Image.png
Description
Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation

Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation to formulate a mathematical framework within which the dynamics of interictal spikes could be thoroughly investigated. A new epileptic spike detection algorithm was developed by employing data adaptive morphological filters. The performance of the spike detection algorithm was favorably compared with others in the literature. A novel spike spatial synchronization measure was developed and tested on coupled spiking neuron models. Application of this measure to individual epileptic spikes in EEG from patients with temporal lobe epilepsy revealed long-term trends of increase in synchronization between pairs of brain sites before seizures and desynchronization after seizures, in the same patient as well as across patients, thus supporting the hypothesis that seizures may occur to break (reset) the abnormal spike synchronization in the brain network. Furthermore, based on these results, a separate spatial analysis of spike rates was conducted that shed light onto conflicting results in the literature about variability of spike rate before and after seizure. The ability to automatically classify seizures into clinical and subclinical was a result of the above findings. A novel method for epileptogenic focus localization from interictal periods based on spike occurrences was also devised, combining concepts from graph theory, like eigenvector centrality, and the developed spike synchronization measure, and tested very favorably against the utilized gold rule in clinical practice for focus localization from seizures onset. Finally, in another application of resetting of brain dynamics at seizures, it was shown that it is possible to differentiate with a high accuracy between patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES). The above studies of spike dynamics have elucidated many unknown aspects of ictogenesis and it is expected to significantly contribute to further understanding of the basic mechanisms that lead to seizures, the diagnosis and treatment of epilepsy.
ContributorsKrishnan, Balu (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Kostantinos (Committee member) / Spanias, Andreas (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
136475-Thumbnail Image.png
Description
Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested

Epilepsy affects numerous people around the world and is characterized by recurring seizures, prompting the ability to predict them so precautionary measures may be employed. One promising algorithm extracts spatiotemporal correlation based features from intracranial electroencephalography signals for use with support vector machines. The robustness of this methodology is tested through a sensitivity analysis. Doing so also provides insight about how to construct more effective feature vectors.
ContributorsMa, Owen (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
135475-Thumbnail Image.png
Description
Divergence functions are both highly useful and fundamental to many areas in information theory and machine learning, but require either parametric approaches or prior knowledge of labels on the full data set. This paper presents a method to estimate the divergence between two data sets in the absence of fully

Divergence functions are both highly useful and fundamental to many areas in information theory and machine learning, but require either parametric approaches or prior knowledge of labels on the full data set. This paper presents a method to estimate the divergence between two data sets in the absence of fully labeled data. This semi-labeled case is common in many domains where labeling data by hand is expensive or time-consuming, or wherever large data sets are present. The theory derived in this paper is demonstrated on a simulated example, and then applied to a feature selection and classification problem from pathological speech analysis.
ContributorsGilton, Davis Leland (Author) / Berisha, Visar (Thesis director) / Cochran, Douglas (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135457-Thumbnail Image.png
Description
This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used in conjunction with a power law curve to calculate an

This work details the bootstrap estimation of a nonparametric information divergence measure, the Dp divergence measure, using a power law model. To address the challenge posed by computing accurate divergence estimates given finite size data, the bootstrap approach is used in conjunction with a power law curve to calculate an asymptotic value of the divergence estimator. Monte Carlo estimates of Dp are found for increasing values of sample size, and a power law fit is used to relate the divergence estimates as a function of sample size. The fit is also used to generate a confidence interval for the estimate to characterize the quality of the estimate. We compare the performance of this method with the other estimation methods. The calculated divergence is applied to the binary classification problem. Using the inherent relation between divergence measures and classification error rate, an analysis of the Bayes error rate of several data sets is conducted using the asymptotic divergence estimate.
ContributorsKadambi, Pradyumna Sanjay (Author) / Berisha, Visar (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

This study measure the effect of temperature on a neural network's ability to detect and classify solar panel faults. It's well known that temperature negatively affects the power output of solar panels. This has consequences on their output data and our ability to distinguish between conditions via machine learning.

ContributorsVerch, Skyler (Author) / Spanias, Andreas (Thesis director) / Tepedelenlioğlu, Cihan (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-12