Matching Items (6)
Filtering by

Clear all filters

Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
171574-Thumbnail Image.png
Description
Despite the rapid adoption of robotics and machine learning in industry, their application to scientific studies remains under-explored. Combining industry-driven advances with scientific exploration provides new perspectives and a greater understanding of the planet and its environmental processes. Focusing on rock detection, mapping, and dynamics analysis, I present technical approaches

Despite the rapid adoption of robotics and machine learning in industry, their application to scientific studies remains under-explored. Combining industry-driven advances with scientific exploration provides new perspectives and a greater understanding of the planet and its environmental processes. Focusing on rock detection, mapping, and dynamics analysis, I present technical approaches and scientific results of developing robotics and machine learning technologies for geomorphology and seismic hazard analysis. I demonstrate an interdisciplinary research direction to push the frontiers of both robotics and geosciences, with potential translational contributions to commercial applications for hazard monitoring and prospecting. To understand the effects of rocky fault scarp development on rock trait distributions, I present a data-processing pipeline that utilizes unpiloted aerial vehicles (UAVs) and deep learning to segment densely distributed rocks in several orders of magnitude. Quantification and correlation analysis of rock trait distributions demonstrate a statistical approach for geomorphology studies. Fragile geological features such as precariously balanced rocks (PBRs) provide upper-bound ground motion constraints for hazard analysis. I develop an offboard method and onboard method as complementary to each other for PBR searching and mapping. Using deep learning, the offboard method segments PBRs in point clouds reconstructed from UAV surveys. The onboard method equips a UAV with edge-computing devices and stereo cameras, enabling onboard machine learning for real-time PBR search, detection, and mapping during surveillance. The offboard method provides an efficient solution to find PBR candidates in existing point clouds, which is useful for field reconnaissance. The onboard method emphasizes mapping individual PBRs for their complete visible surface features, such as basal contacts with pedestals–critical geometry to analyze fragility. After PBRs are mapped, I investigate PBR dynamics by building a virtual shake robot (VSR) that simulates ground motions to test PBR overturning. The VSR demonstrates that ground motion directions and niches are important factors determining PBR fragility, which were rarely considered in previous studies. The VSR also enables PBR large-displacement studies by tracking a toppled-PBR trajectory, presenting novel methods of rockfall hazard zoning. I build a real mini shake robot providing a reverse method to validate simulation experiments in the VSR.
ContributorsChen, Zhiang (Author) / Arrowsmith, Ramon (Thesis advisor) / Das, Jnaneshwar (Thesis advisor) / Bell, James (Committee member) / Berman, Spring (Committee member) / Christensen, Philip (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2022
171848-Thumbnail Image.png
Description
Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with

Multi-segment manipulators and mobile robot collectives are examples of multi-agent robotic systems, in which each segment or robot can be considered an agent. Fundamental motion control problems for such systems include the stabilization of one or more agents to target configurations or trajectories while preventing inter-agent collisions, agent collisions with obstacles, and deadlocks. Despite extensive research on these control problems, there are still challenges in designing controllers that (1) are scalable with the number of agents; (2) have theoretical guarantees on collision-free agent navigation; and (3) can be used when the states of the agents and the environment are only partially observable. Existing centralized and distributed control architectures have limited scalability due to their computational complexity and communication requirements, while decentralized control architectures are often effective only under impractical assumptions that do not hold in real-world implementations. The main objective of this dissertation is to develop and evaluate decentralized approaches for multi-agent motion control that enable agents to use their onboard sensors and computational resources to decide how to move through their environment, with limited or absent inter-agent communication and external supervision. Specifically, control approaches are designed for multi-segment manipulators and mobile robot collectives to achieve position and pose (position and orientation) stabilization, trajectory tracking, and collision and deadlock avoidance. These control approaches are validated in both simulations and physical experiments to show that they can be implemented in real-time while remaining computationally tractable. First, kinematic controllers are proposed for position stabilization and trajectory tracking control of two- or three-dimensional hyper-redundant multi-segment manipulators. Next, robust and gradient-based feedback controllers are presented for individual holonomic and nonholonomic mobile robots that achieve position stabilization, trajectory tracking control, and obstacle avoidance. Then, nonlinear Model Predictive Control methods are developed for collision-free, deadlock-free pose stabilization and trajectory tracking control of multiple nonholonomic mobile robots in known and unknown environments with obstacles, both static and dynamic. Finally, a feedforward proportional-derivative controller is defined for collision-free velocity tracking of a moving ground target by multiple unmanned aerial vehicles.
ContributorsSalimi Lafmejani, Amir (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2022
154029-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability robotic-platforms for conducting FAME research. This is shown for two vehicle classes: (1) six differential-drive (DD) RC vehicles called Thunder Tumbler (DDTT) and (2) one rear-wheel drive (RWD) RC car called Ford F-150 (1:14 scale). Each DDTT-vehicle was augmented to provide a substantive suite of capabilities as summarized below (It should be noted, however, that only one DDTT-vehicle was augmented with an inertial measurement unit (IMU) and 2.4 GHz RC capability): (1) magnetic wheel-encoders/IMU for(dead-reckoning-based) inner-loop speed-control and outer-loop position-directional-control, (2) Arduino Uno microcontroller-board for encoder-based inner-loop speed-control and encoder-IMU-ultrasound-based outer-loop cruise-position-directional-separation-control, (3) Arduino motor-shield for inner-loop motor-speed-control, (4)Raspberry Pi II computer-board for demanding outer-loop vision-based cruise- position-directional-control, (5) Raspberry Pi 5MP camera for outer-loop cruise-position-directional-control (exploiting WiFi to send video back to laptop), (6) forward-pointing ultrasonic distance/rangefinder sensor for outer-loop separation-control, and (7) 2.4 GHz spread-spectrum RC capability to replace original 27/49 MHz RC. Each “enhanced”/ augmented DDTT-vehicle costs less than 􀀀175 but offers the capability of commercially available vehicles costing over 􀀀500. Both the Arduino and Raspberry are low-cost, well-supported (software wise) and easy-to-use. For the vehicle classes considered (i.e. DD, RWD), both kinematic and dynamical (planar xy) models are examined. Suitable nonlinear/linear-models are used to develop inner/outer-loopcontrol laws.

All demonstrations presented involve enhanced DDTT-vehicles; one the F-150; one a quadrotor. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) position-control along line (3) position-control along curve (4) planar (xy) Cartesian stabilization, (5) cruise-control along jagged line/curve, (6) vehicle-target spacing-control, (7) multi-robot spacing-control along line/curve, (8) tracking slowly-moving remote-controlled quadrotor, (9) avoiding obstacle while moving toward target, (10) RC F-150 followed by DDTT-vehicle. Hardware data/video is compared with, and corroborated by, model-based simulations. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
ContributorsLin, Zhenyu (Author) / Rodriguez, Armando Antonio (Committee member) / Si, Jennie (Committee member) / Berman, Spring Melody (Committee member) / Arizona State University (Publisher)
Created2015
132384-Thumbnail Image.png
Description
As urban populations increase, so does the demand for innovative transportation solutions which reduce traffic congestion, reduce pollution, and reduce inequalities by providing mobility for all kinds of people. One emerging solution is self-driving vehicles, which have been coined as a safer driving method by reducing fatalities due to driving

As urban populations increase, so does the demand for innovative transportation solutions which reduce traffic congestion, reduce pollution, and reduce inequalities by providing mobility for all kinds of people. One emerging solution is self-driving vehicles, which have been coined as a safer driving method by reducing fatalities due to driving accidents. While completely automated vehicles are still in the testing and development phase, the United Nations predict their full debut by 2030 [1]. While many resources are focusing their time on creating the technology to execute decisions such as the controls, communications, and sensing, engineers often leave ethics as an afterthought. The truth is autonomous vehicles are imperfect systems that will still experience possible crash scenarios even if all systems are working perfectly. Because of this, ethical machine learning must be considered and implemented to avoid an ethical catastrophe which could delay or completely halt future autonomous vehicle development. This paper presents an experiment for determining a more complete view of human morality and how this translates into ideal driving behaviors.
This paper analyzes responses to deviated Trolley Problem scenarios [5] in a simulated driving environment and still images from MIT’s moral machine website [8] to better understand how humans respond to various crashes. Also included is participants driving habits and personal values, however the bulk of that analysis is not included here. The results of the simulation prove that for the most part in driving scenarios, people would rather sacrifice themselves over people outside of the vehicle. The moral machine scenarios prove that self-sacrifice changes as the trend to harm one’s own vehicle was not so strong when passengers were introduced. Further defending this idea is the importance placed on Family Security over any other value.
Suggestions for implementing ethics into autonomous vehicle crashes stem from the results of this experiment but are dependent on more research and greater sample sizes. Once enough data is collected and analyzed, a moral baseline for human’s moral domain may be agreed upon, quantified, and turned into hard rules governing how self-driving cars should act in different scenarios. With these hard rules as boundary conditions, artificial intelligence should provide training and incremental learning for scenarios which cannot be determined by the rules. Finally, the neural networks which make decisions in artificial intelligence must move from their current “black box” state to something more traceable. This will allow researchers to understand why an autonomous vehicle made a certain decision and allow tweaks as needed.
Created2019-05
168538-Thumbnail Image.png
Description
Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model

Recently, Generative Adversarial Networks (GANs) have been applied to the problem of Cold-Start Recommendation, but the training performance of these models is hampered by the extreme sparsity in warm user purchase behavior. This thesis introduces a novel representation for user-vectors by combining user demographics and user preferences, making the model a hybrid system which uses Collaborative Filtering and Content Based Recommendation. This system models user purchase behavior using weighted user-product preferences (explicit feedback) rather than binary user-product interactions (implicit feedback). Using this a novel sparse adversarial model, Sparse ReguLarized Generative Adversarial Network (SRLGAN), is developed for Cold-Start Recommendation. SRLGAN leverages the sparse user-purchase behavior which ensures training stability and avoids over-fitting on warm users. The performance of SRLGAN is evaluated on two popular datasets and demonstrate state-of-the-art results.
ContributorsShah, Aksheshkumar Ajaykumar (Author) / Venkateswara, Hemanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Ladani, Leila J (Committee member) / Arizona State University (Publisher)
Created2022