Matching Items (8)
Filtering by

Clear all filters

153915-Thumbnail Image.png
Description
Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition

Modern measurement schemes for linear dynamical systems are typically designed so that different sensors can be scheduled to be used at each time step. To determine which sensors to use, various metrics have been suggested. One possible such metric is the observability of the system. Observability is a binary condition determining whether a finite number of measurements suffice to recover the initial state. However to employ observability for sensor scheduling, the binary definition needs to be expanded so that one can measure how observable a system is with a particular measurement scheme, i.e. one needs a metric of observability. Most methods utilizing an observability metric are about sensor selection and not for sensor scheduling. In this dissertation we present a new approach to utilize the observability for sensor scheduling by employing the condition number of the observability matrix as the metric and using column subset selection to create an algorithm to choose which sensors to use at each time step. To this end we use a rank revealing QR factorization algorithm to select sensors. Several numerical experiments are used to demonstrate the performance of the proposed scheme.
ContributorsIlkturk, Utku (Author) / Gelb, Anne (Thesis advisor) / Platte, Rodrigo (Thesis advisor) / Cochran, Douglas (Committee member) / Renaut, Rosemary (Committee member) / Armbruster, Dieter (Committee member) / Arizona State University (Publisher)
Created2015
155971-Thumbnail Image.png
Description
Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for

Our ability to understand networks is important to many applications, from the analysis and modeling of biological networks to analyzing social networks. Unveiling network dynamics allows us to make predictions and decisions. Moreover, network dynamics models have inspired new ideas for computational methods involving multi-agent cooperation, offering effective solutions for optimization tasks. This dissertation presents new theoretical results on network inference and multi-agent optimization, split into two parts -

The first part deals with modeling and identification of network dynamics. I study two types of network dynamics arising from social and gene networks. Based on the network dynamics, the proposed network identification method works like a `network RADAR', meaning that interaction strengths between agents are inferred by injecting `signal' into the network and observing the resultant reverberation. In social networks, this is accomplished by stubborn agents whose opinions do not change throughout a discussion. In gene networks, genes are suppressed to create desired perturbations. The steady-states under these perturbations are characterized. In contrast to the common assumption of full rank input, I take a laxer assumption where low-rank input is used, to better model the empirical network data. Importantly, a network is proven to be identifiable from low rank data of rank that grows proportional to the network's sparsity. The proposed method is applied to synthetic and empirical data, and is shown to offer superior performance compared to prior work. The second part is concerned with algorithms on networks. I develop three consensus-based algorithms for multi-agent optimization. The first method is a decentralized Frank-Wolfe (DeFW) algorithm. The main advantage of DeFW lies on its projection-free nature, where we can replace the costly projection step in traditional algorithms by a low-cost linear optimization step. I prove the convergence rates of DeFW for convex and non-convex problems. I also develop two consensus-based alternating optimization algorithms --- one for least square problems and one for non-convex problems. These algorithms exploit the problem structure for faster convergence and their efficacy is demonstrated by numerical simulations.

I conclude this dissertation by describing future research directions.
ContributorsWai, Hoi To (Author) / Scaglione, Anna (Thesis advisor) / Berisha, Visar (Committee member) / Nedich, Angelia (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2017
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
154471-Thumbnail Image.png
Description
The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon

The data explosion in the past decade is in part due to the widespread use of rich sensors that measure various physical phenomenon -- gyroscopes that measure orientation in phones and fitness devices, the Microsoft Kinect which measures depth information, etc. A typical application requires inferring the underlying physical phenomenon from data, which is done using machine learning. A fundamental assumption in training models is that the data is Euclidean, i.e. the metric is the standard Euclidean distance governed by the L-2 norm. However in many cases this assumption is violated, when the data lies on non Euclidean spaces such as Riemannian manifolds. While the underlying geometry accounts for the non-linearity, accurate analysis of human activity also requires temporal information to be taken into account. Human movement has a natural interpretation as a trajectory on the underlying feature manifold, as it evolves smoothly in time. A commonly occurring theme in many emerging problems is the need to \emph{represent, compare, and manipulate} such trajectories in a manner that respects the geometric constraints. This dissertation is a comprehensive treatise on modeling Riemannian trajectories to understand and exploit their statistical and dynamical properties. Such properties allow us to formulate novel representations for Riemannian trajectories. For example, the physical constraints on human movement are rarely considered, which results in an unnecessarily large space of features, making search, classification and other applications more complicated. Exploiting statistical properties can help us understand the \emph{true} space of such trajectories. In applications such as stroke rehabilitation where there is a need to differentiate between very similar kinds of movement, dynamical properties can be much more effective. In this regard, we propose a generalization to the Lyapunov exponent to Riemannian manifolds and show its effectiveness for human activity analysis. The theory developed in this thesis naturally leads to several benefits in areas such as data mining, compression, dimensionality reduction, classification, and regression.
ContributorsAnirudh, Rushil (Author) / Turaga, Pavan (Thesis advisor) / Cochran, Douglas (Committee member) / Runger, George C. (Committee member) / Taylor, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
154587-Thumbnail Image.png
Description
Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric

Information divergence functions, such as the Kullback-Leibler divergence or the Hellinger distance, play a critical role in statistical signal processing and information theory; however estimating them can be challenge. Most often, parametric assumptions are made about the two distributions to estimate the divergence of interest. In cases where no parametric model fits the data, non-parametric density estimation is used. In statistical signal processing applications, Gaussianity is usually assumed since closed-form expressions for common divergence measures have been derived for this family of distributions. Parametric assumptions are preferred when it is known that the data follows the model, however this is rarely the case in real-word scenarios. Non-parametric density estimators are characterized by a very large number of parameters that have to be tuned with costly cross-validation. In this dissertation we focus on a specific family of non-parametric estimators, called direct estimators, that bypass density estimation completely and directly estimate the quantity of interest from the data. We introduce a new divergence measure, the $D_p$-divergence, that can be estimated directly from samples without parametric assumptions on the distribution. We show that the $D_p$-divergence bounds the binary, cross-domain, and multi-class Bayes error rates and, in certain cases, provides provably tighter bounds than the Hellinger divergence. In addition, we also propose a new methodology that allows the experimenter to construct direct estimators for existing divergence measures or to construct new divergence measures with custom properties that are tailored to the application. To examine the practical efficacy of these new methods, we evaluate them in a statistical learning framework on a series of real-world data science problems involving speech-based monitoring of neuro-motor disorders.
ContributorsWisler, Alan (Author) / Berisha, Visar (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Liss, Julie (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2017
187769-Thumbnail Image.png
Description
This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented for designing tree-based adaptive tests. On an application to youth

This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented for designing tree-based adaptive tests. On an application to youth delinquency in Honduras, the method produces a 15-item instrument that is almost as accurate as a full-length 150+ item test. The framework includes specific considerations for the context in which the test will be administered, and provides uncertainty quantification around the trade-offs of shortening lengthy tests. In the second part, classification complexity is explored via theoretical and empirical results from statistical learning theory, information theory, and empirical data complexity measures. A simulation study that explicitly controls two key aspects of classification complexity is performed to relate the theoretical and empirical approaches. Throughout, a unified language and notation that formalizes classification complexity is developed; this same notation is used in subsequent chapters to discuss classification complexity in the context of a speech-based screening test. In the final part, the relative merits of task and feature engineering when designing a speech-based cognitive screening test are explored. Through an extensive classification analysis on a clinical speech dataset from patients with normal cognition and Alzheimer’s disease, the speech elicitation task is shown to have a large impact on test accuracy; carefully performed task and feature engineering are required for best results. A new framework for objectively quantifying speech elicitation tasks is introduced, and two methods are proposed for automatically extracting insights into the aspects of the speech elicitation task that are driving classification performance. The dissertation closes with recommendations for how to evaluate the obtained insights and use them to guide future design of speech-based screening tests.
ContributorsKrantsevich, Chelsea (Author) / Hahn, P. Richard (Thesis advisor) / Berisha, Visar (Committee member) / Lopes, Hedibert (Committee member) / Renaut, Rosemary (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
187456-Thumbnail Image.png
Description
The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target

The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target distributions and (iv) belief on existing metrics as reliable indicators of performance. When any of these assumptions are violated, the models exhibit brittleness producing adversely varied behavior. This dissertation focuses on methods for accurate model design and characterization that enhance process reliability when certain assumptions are not met. With the need to safely adopt artificial intelligence tools in practice, it is vital to build reliable failure detectors that indicate regimes where the model must not be invoked. To that end, an error predictor trained with a self-calibration objective is developed to estimate loss consistent with the underlying model. The properties of the error predictor are described and their utility in supporting introspection via feature importances and counterfactual explanations is elucidated. While such an approach can signal data regime changes, it is critical to calibrate models using regimes of inlier (training) and outlier data to prevent under- and over-generalization in models i.e., incorrectly identifying inliers as outliers and vice-versa. By identifying the space for specifying inliers and outliers, an anomaly detector that can effectively flag data of varying semantic complexities in medical imaging is next developed. Uncertainty quantification in deep learning models involves identifying sources of failure and characterizing model confidence to enable actionability. A training strategy is developed that allows the accurate estimation of model uncertainties and its benefits are demonstrated for active learning and generalization gap prediction. This helps identify insufficiently sampled regimes and representation insufficiency in models. In addition, the task of deep inversion under data scarce scenarios is considered, which in practice requires a prior to control the optimization. By identifying limitations in existing work, data priors powered by generative models and deep model priors are designed for audio restoration. With relevant empirical studies on a variety of benchmarks, the need for such design strategies is demonstrated.
ContributorsNarayanaswamy, Vivek Sivaraman (Author) / Spanias, Andreas (Thesis advisor) / J. Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2023
158716-Thumbnail Image.png
Description
The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that

The availability of data for monitoring and controlling the electrical grid has increased exponentially over the years in both resolution and quantity leaving a large data footprint. This dissertation is motivated by the need for equivalent representations of grid data in lower-dimensional feature spaces so that machine learning algorithms can be employed for a variety of purposes. To achieve that, without sacrificing the interpretation of the results, the dissertation leverages the physics behind power systems, well-known laws that underlie this man-made infrastructure, and the nature of the underlying stochastic phenomena that define the system operating conditions as the backbone for modeling data from the grid.

The first part of the dissertation introduces a new framework of graph signal processing (GSP) for the power grid, Grid-GSP, and applies it to voltage phasor measurements that characterize the overall system state of the power grid. Concepts from GSP are used in conjunction with known power system models in order to highlight the low-dimensional structure in data and present generative models for voltage phasors measurements. Applications such as identification of graphical communities, network inference, interpolation of missing data, detection of false data injection attacks and data compression are explored wherein Grid-GSP based generative models are used.

The second part of the dissertation develops a model for a joint statistical description of solar photo-voltaic (PV) power and the outdoor temperature which can lead to better management of power generation resources so that electricity demand such as air conditioning and supply from solar power are always matched in the face of stochasticity. The low-rank structure inherent in solar PV power data is used for forecasting and to detect partial-shading type of faults in solar panels.
ContributorsRamakrishna, Raksha (Author) / Scaglione, Anna (Thesis advisor) / Cochran, Douglas (Committee member) / Spanias, Andreas (Committee member) / Vittal, Vijay (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2020