Matching Items (4)
Filtering by

Clear all filters

168710-Thumbnail Image.png
Description
The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their

The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their defense systems. Deep Learning, a subset of Machine Learning (ML) and Artificial Intelligence (AI), fills in this gapwith its ability to learn from huge amounts of data, and improve its performance as the data it learns from increases. In this dissertation, I bring forward security issues pertaining to two top threats that most organizations fear, Advanced Persistent Threat (APT), and Distributed Denial of Service (DDoS), along with deep learning models built towards addressing those security issues. First, I present a deep learning model, APT Detection, capable of detecting anomalous activities in a system. Evaluation of this model demonstrates how it can contribute to early detection of an APT attack with an Area Under the Curve (AUC) of up to 91% on a Receiver Operating Characteristic (ROC) curve. Second, I present DAPT2020, a first of its kind dataset capturing an APT attack exploiting web and system vulnerabilities in an emulated organization’s production network. Evaluation of the dataset using well known machine learning models demonstrates the need for better deep learning models to detect APT attacks. I then present DAPT2021, a semi-synthetic dataset capturing an APT attackexploiting human vulnerabilities, alongside 2 less skilled attacks. By emulating the normal behavior of the employees in a set target organization, DAPT2021 has been created to enable researchers study the causations and correlations among the captured data, a much-needed information to detect an underlying threat early. Finally, I present a distributed defense framework, SmartDefense, that can detect and mitigate over 90% of DDoS traffic at the source and over 97.5% of the remaining DDoS traffic at the Internet Service Provider’s (ISP’s) edge network. Evaluation of this work shows how by using attributes sent by customer edge network, SmartDefense can further help ISPs prevent up to 51.95% of the DDoS traffic from going to the destination.
ContributorsMyneni, Sowmya (Author) / Xue, Guoliang (Thesis advisor) / Doupe, Adam (Committee member) / Li, Baoxin (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2022
156799-Thumbnail Image.png
Description
Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks

Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation

are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand

what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,

attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.

Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
ContributorsAlshamrani, Adel (Author) / Huang, Dijiang (Thesis advisor) / Doupe, Adam (Committee member) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2018
153304-Thumbnail Image.png
Description
This dissertation explores the various online radicalization and recruitment practices of groups like al-Qaeda and Hezbollah, as well as Salafi Jihadists in general. I will also outline the inadequacies of the federal government's engagement with terrorist / Islamist ideologies and explore the ways in which early 20th century foundational Islamist

This dissertation explores the various online radicalization and recruitment practices of groups like al-Qaeda and Hezbollah, as well as Salafi Jihadists in general. I will also outline the inadequacies of the federal government's engagement with terrorist / Islamist ideologies and explore the ways in which early 20th century foundational Islamist theorists like Hasan al-Banna, Sayyid Qutb, and Abul ala Mawdudi have affected contemporary extremist Islamist groups, while exploring this myth of the ideal caliphate which persists in the ideology of contemporary extremist Islamist groups. In a larger sense, I am arguing that exploitation of the internet (particularly social networking platforms) in the radicalization of new communities of followers is much more dangerous than cyberterrorism (as in attacks on cyber networks within the government and the private sector), which is what is most often considered to be the primary threat that terrorists pose with their presence on the internet. Online radicalization should, I argue, be given more consideration when forming public policy because of the immediate danger that it poses, especially given the rise of microterrorism. Similarly, through the case studies that I am examining, I am bringing the humanities into the discussion of extremist (religious) rhetorics, an area of discourse that those scholars have largely ignored.
ContributorsSalihu, Flurije (Author) / Ali, Souad T. (Thesis advisor) / Miller, Keith (Thesis advisor) / Corman, Steven (Committee member) / Gee, James P (Committee member) / Arizona State University (Publisher)
Created2014
158081-Thumbnail Image.png
Description
Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational

Despite an abundance of defenses that work to protect Internet users from online threats, malicious actors continue deploying relentless large-scale phishing attacks that target these users. Effectively mitigating phishing attacks remains a challenge for the security community due to attackers' ability to evolve and adapt to defenses, the cross-organizational nature of the infrastructure abused for phishing, and discrepancies between theoretical and realistic anti-phishing systems. Although technical countermeasures cannot always compensate for the human weakness exploited by social engineers, maintaining a clear and up-to-date understanding of the motivation behind---and execution of---modern phishing attacks is essential to optimizing such countermeasures.

In this dissertation, I analyze the state of the anti-phishing ecosystem and show that phishers use evasion techniques, including cloaking, to bypass anti-phishing mitigations in hopes of maximizing the return-on-investment of their attacks. I develop three novel, scalable data-collection and analysis frameworks to pinpoint the ecosystem vulnerabilities that sophisticated phishing websites exploit. The frameworks, which operate on real-world data and are designed for continuous deployment by anti-phishing organizations, empirically measure the robustness of industry-standard anti-phishing blacklists (PhishFarm and PhishTime) and proactively detect and map phishing attacks prior to launch (Golden Hour). Using these frameworks, I conduct a longitudinal study of blacklist performance and the first large-scale end-to-end analysis of phishing attacks (from spamming through monetization). As a result, I thoroughly characterize modern phishing websites and identify desirable characteristics for enhanced anti-phishing systems, such as more reliable methods for the ecosystem to collectively detect phishing websites and meaningfully share the corresponding intelligence. In addition, findings from these studies led to actionable security recommendations that were implemented by key organizations within the ecosystem to help improve the security of Internet users worldwide.
ContributorsOest, Adam (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Thesis advisor) / Shoshitaishvili, Yan (Committee member) / Johnson, RC (Committee member) / Arizona State University (Publisher)
Created2020