Matching Items (75)
Filtering by

Clear all filters

150041-Thumbnail Image.png
Description
The under-representation of women in science, technology, engineering and mathematics (STEM) fields indicates the presence of gender related barriers that impacted the persistence of women in science and engineering doctoral studies. The purpose of this study was to investigate the barriers of women doctoral students in STEM fields which identified

The under-representation of women in science, technology, engineering and mathematics (STEM) fields indicates the presence of gender related barriers that impacted the persistence of women in science and engineering doctoral studies. The purpose of this study was to investigate the barriers of women doctoral students in STEM fields which identified supporting factors for them as well. This study also tried to determine if there was any difference in perceiving barriers among three disciplines - engineering, life sciences and natural sciences. An online questionnaire (19 Likert-type questions and one open-ended question) was sent to women STEM doctoral students studying at the Arizona State University (ASU). Questions were based on some factors which might act as obstacles or supports during their doctoral studies. Both quantitative and qualitative analyses were conducted. Factors such as work-life balance, time-management, low self-confidence, lack of female role model, fewer numbers of women in science and engineering classes, and male dominated environment revealed as significant barriers according to both the analyses but factors such as difficulty with the curriculum, gender discrimination, and two-career problem were chosen as barriers only in the free response question. Positive treatment from advisor, family support, availability of funding, and absence of sexual harassment assisted these women continuing their PhD programs at ASU. However, no significant difference was observed with respect to perceiving barriers among the three groups mentioned above. Recommendations for change in science and engineering curricula and active recruitment of female faculty are discussed to reduce or at best to remove the barriers and how to facilitate participation and retention of more women in STEM fields especially at the doctoral level.
ContributorsChaudhuri, Dola (Author) / Baker, Dale (Thesis advisor) / Sandlin, Jennifer (Committee member) / Edwards, Vicki (Committee member) / Arizona State University (Publisher)
Created2011
149738-Thumbnail Image.png
Description
A researcher reflects using a close reading of interview transcripts and description to share what happened while participating in multiple roles in a larger ethnographic study of the acculturation process of deaf students in kindergarten classrooms in three countries. The course of this paper will focus on three instances that

A researcher reflects using a close reading of interview transcripts and description to share what happened while participating in multiple roles in a larger ethnographic study of the acculturation process of deaf students in kindergarten classrooms in three countries. The course of this paper will focus on three instances that took place in Japan and America. The analysis of these examples will bring to light the concept of taking on multiple roles, including graduate research assistant, interpreter, cultural mediator, and sociolinguistic consultant within a research project serving to uncover challenging personal and professional dilemmas and crossing boundaries; the dual roles, interpreter and researcher being the primary focus. This analysis results in a brief look at a thought provoking, yet evolving task of the researcher/interpreter. Maintaining multiple roles in the study the researcher is able to potentially identify and contribute "hidden" knowledge that may have been overlooked by other members of the research team. Balancing these different roles become key implications when interpreting practice, ethical boundaries, and participant research at times the lines of separation are blurred.
ContributorsHensley, Jennifer Scarboro (Author) / Tobin, Joseph (Thesis advisor) / Artiles, Alfredo (Committee member) / Horejes, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
149799-Thumbnail Image.png
Description
The nature of science (NOS) is included in the National Science Education Standards and is described as a critical component in the development of scientifically literate students. Despite the significance of NOS in science education reform, research shows that many students continue to possess naïve views of NOS. Explicit and

The nature of science (NOS) is included in the National Science Education Standards and is described as a critical component in the development of scientifically literate students. Despite the significance of NOS in science education reform, research shows that many students continue to possess naïve views of NOS. Explicit and reflective discussion as an instructional approach is relatively new in the field of research in NOS. When compared to other approaches, explicit instruction has been identified as more effective in promoting informed views of NOS, but gaps in student understanding still exist. The purpose of this study was to deepen the understanding of student learning of NOS through the investigation of two variations of explicit instruction. The subjects of the study were two seventh grade classes taught by the same classroom teacher. One class received explicit instruction of NOS within a plate tectonics unit and the second class received explicit instruction of NOS within a plate tectonics unit plus supporting activities focused on specific aspects of NOS. The instruction time for both classes was equalized and took place over a three week time period. The intention of this study was to see if the additional NOS activities helped students build a deeper understanding of NOS, or if a deep understanding could be formed solely through explicit and reflective discussion within content instruction. The results of the study showed that both classes progressed in their understanding of NOS. When the results of the two groups were compared, the group with the additional activities showed statistically significant gains on two of the four aspects of NOS assessed. These results suggest that the activities may have been valuable in promoting informed views, but more research is needed in this area.
ContributorsMelville, Melissa (Author) / Luft, Julie (Thesis advisor) / Baker, Dale (Committee member) / Brem, Sarah (Committee member) / Arizona State University (Publisher)
Created2011
149853-Thumbnail Image.png
Description
ABSTRACT Early career science teachers are often assigned to classrooms with high numbers of English language learners (ELL students). As these teachers learn to become effective practitioners, the circumstances surrounding them merit a thorough examination. This study examines the longitudinal changes in Pedagogical Content Knowledge (PCK) and practices of six

ABSTRACT Early career science teachers are often assigned to classrooms with high numbers of English language learners (ELL students). As these teachers learn to become effective practitioners, the circumstances surrounding them merit a thorough examination. This study examines the longitudinal changes in Pedagogical Content Knowledge (PCK) and practices of six early career science teachers who taught in urban schools. The teachers participated in the Alternative Support for Induction Science Teachers (ASIST) program during their initial two years of teaching. Our research team followed the participants over a five-year period. This study focuses on data from Years 1, 3, and 5. The data collected included classroom observations and interviews. In addition, classroom artifacts were collected periodically for the purpose of triangulation. The analysis of the data revealed that with the support of the ASIST program, the teachers implemented inquiry lessons and utilized instructional materials that promoted academic language skills and science competencies among their ELL students. Conversely, standardized testing, teaching assignment, and school culture played a role in constraining the implementation of inquiry-based practices. The results of this study call for collaborative efforts among university science educators and school administrators to provide professional development opportunities and support for the implementation of inquiry and language practices among early career science teachers of ELL students.
ContributorsOrtega, Irasema (Author) / Luft, Julie A (Thesis advisor) / Artiles, Alfredo (Committee member) / Baker, Dale R. (Committee member) / Arizona State University (Publisher)
Created2011
150178-Thumbnail Image.png
Description
ABSTRACT For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue

ABSTRACT For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and students perceived their science program to be gender fair. Eighth grade participants who had career goals related to science and engineering, indicated that their science instruction did not provide the rigor they needed to improve their critical skills for advanced placement in high school. Recommendations include the need for professional development on inquiry-based science, equitable student achievement, and diverse perspectives in science education.
ContributorsSmiley, Bettie (Author) / Powers, Jeanne M. (Thesis advisor) / Appleton, Nicholas (Committee member) / Macey, Donna (Committee member) / Arizona State University (Publisher)
Created2011
150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150324-Thumbnail Image.png
Description
The purpose of this study was to analyze the impact of a context-based teaching approach (STS) versus a more traditional textbook approach on the attitudes and achievement of community college chemistry students. In studying attitudes toward chemistry within this study, I used a 30-item Likert scale in order to study

The purpose of this study was to analyze the impact of a context-based teaching approach (STS) versus a more traditional textbook approach on the attitudes and achievement of community college chemistry students. In studying attitudes toward chemistry within this study, I used a 30-item Likert scale in order to study the importance of chemistry in students' lives, the importance of chemistry, the difficulty of chemistry, interest in chemistry, and the usefulness of chemistry for their future career. Though the STS approach students had higher attitude post scores, there was no significant difference between the STS and textbook students' attitude post scores. It was noted that females had higher postattitude scores in the STS group, while males had higher postattitude scores in the textbook group. With regard to postachievement, I noted that males had higher scores in both groups. A correlation existed between postattitude and postachievement in the STS classroom. In summary, while an association between attitude and achievement was found in the STS classroom, teaching approach or sex was not found to influence attitudes, while sex was also not found to influence achievement. These results, overall, suggest that attitudes are not expected to change on the basis of either teaching approach or gender, and that techniques other than changing the teaching approach would need to be used in order to improve the attitudes of students. Qualitative analysis of an online discussion activity on Energy revealed that STS students were able to apply aspects of chemistry in decision making related to socioscientific issues. Additional analysis of interview and written responses provided insight regarding attitudes toward chemistry, with respect to topics of applicability of chemistry to life, difficulties with chemistry, teaching approach for chemistry, and the intent for enrolling in additional chemistry courses. In addition, the surveys of female students brought out subcategories with regard to emotional and professional characteristics of a good teacher, under the category of characteristics of teaching approach. With respect to the category of course experience, subcategories of useful knowledge to solve real-life problems and knowledge for future career were revealed. The differences between the control group females and STS group females with respect to these characteristics was striking and threw insight into how teacher behavior and teaching approach shape student attitudes to chemistry in case of female students.
ContributorsPerkins, Gita (Author) / Baker, Dale R. (Thesis advisor) / Sloane, Finbarr (Committee member) / Marsh, Josephine P (Committee member) / Arizona State University (Publisher)
Created2011
150266-Thumbnail Image.png
Description
An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately,

An understanding of the Nature of Science (NOS) remains a fundamental goal of science education in the Unites States. A developed understanding of NOS provides a framework in which to situate science knowledge. Secondary science teachers play a critical role in providing students with an introduction to understanding NOS. Unfortunately, due to the high turnover rates of secondary science teachers in the United States, this critical role is often filled by relatively novice teachers. These beginning secondary science teachers make instructional decisions regarding science that are drawn from their emerging knowledge base, including a tentative understanding of NOS. This tentative knowledge can be affected by environment and culture of the classroom, school, and district in which beginning teachers find themselves. When examining NOS among preservice and beginning teachers the background and demographics of the teachers are often ignored. These teachers are treated as a homogenous block in terms of their initial understanding of NOS. This oversight potentially ignores interactions that may happen over time as teachers cross the border from college students, preservice teachers, and scientists into the classroom environment. Through Symbolic Interactionism we can explain how teachers change in order to adapt to their new surroundings and how this adaptation may be detrimental to their understanding of NOS and ultimately to their practice. 63 teachers drawn from a larger National Science Foundation (NSF) funded study were interviewed about their understanding of NOS over three years. Several demographic factors including college major, preservice program, number of History and Philosophy of Science classes, and highest academic degree achieve were shown to have an affect on the understanding of NOS over time. In addition, over time, the teachers tended to 'converge' in their understanding of NOS regardless of preservice experiences or induction support. Both the affect of different demographics amongst teachers and the 'converging' aspect of their understanding of NOS provide much needed insight for teacher trainers, mentors, and researchers.
ContributorsFirestone, Jonah B (Author) / Luft, Julie A (Thesis advisor) / Baker, Dale (Committee member) / Perry, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150087-Thumbnail Image.png
Description
Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in

Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in the writing process from receiving peer feedback or teacher feedback on rough drafts of scientific explanations. The study also looked at whether males and females reacted differently to the treatment groups. And it examined if content knowledge and the written scientific explanations were correlated. The study looked at 38 sixth and seventh-grade students throughout a 7-week earth science unit on earth systems. The unit had six lessons. One lesson introduced the students to writing scientific explanations, and the other five were inquiry-based content lessons. They wrote four scientific explanations throughout the unit of study and received feedback on all four rough drafts. The sixth-graders received teacher feedback on each explanation and the seventh-graders received peer-feedback after learning how to give constructive feedback. The students also took a multiple-choice pretest/posttest to evaluate content knowledge. The analyses showed that there was no significant difference between the group receiving peer feedback and the group receiving teacher feedback on the final drafts of the scientific explanations. There was, however, a significant effect of practice on the scores of the scientific explanations. Students wrote significantly better with each subsequent scientific explanation. There was no significant difference between males and females based on the treatment they received. There was a significant correlation between the gain in pretest to posttest scores and the scientific explanations and a significant correlation between the posttest scores and the scientific explanations. Content knowledge and written scientific explanations are related. Students who wrote scientific explanations had significant gains in content knowledge.
ContributorsLange, Katie (Author) / Baker, Dale (Thesis advisor) / Megowan, Colleen (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2011
150142-Thumbnail Image.png
Description
Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest

Climate change is not a thing of the future. Indigenous people are being affected by climate changes now. Native American Earth scientists could help Native communities deal with both climate change and environmental pollution issues, but are noticeably lacking in Earth Science degree programs. The Earth Sciences produce the lowest percentage of minority scientists when compared with other science and engineering fields. Twenty semi-structured interviews were gathered from American Indian/ Alaska Native Earth Scientists and program directors who work directly with Native students to broaden participation in the field. Data was analyzed using qualitative methods and constant comparison analysis. Barriers Native students faced in this field are discussed, as well as supports which go the furthest in assisting achievement of higher education goals. Program directors give insight into building pathways and programs to encourage Native student participation and success in Earth Science degree programs. Factors which impede obtaining a college degree include financial barriers, pressures from familial obligations, and health issues. Factors which impede the decision to study Earth Science include unfamiliarity with geoscience as a field of study and career choice, the uninviting nature of Earth Science as a profession, and curriculum that is irrelevant to the practical needs of Native communities or courses which are inaccessible geographically. Factors which impede progress that are embedded in Earth Science programs include educational preparation, academic information and counseling and the prevalence of a Western scientific perspective to the exclusion of all other perspectives. Intradepartmental relationships also pose barriers to the success of some students, particularly those who are non-traditional students (53%) or women (80%). Factors which support degree completion include financial assistance, mentors and mentoring, and research experiences. Earth scientists can begin broaden participation by engaging in community-inspired research, which stems from the needs of a community and is developed in collaboration with it. Designed to be useful in meeting the needs of the community, it should include using members of the community to help gather and analyze data. These community members could be students or potential students who might be persuaded to pursue an Earth Science degree.
ContributorsBueno Watts, Nievita F (Author) / Baker, Dale R. (Thesis advisor) / Mckinley Jones Brayboy, Bryan (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2011