Matching Items (5)
Filtering by

Clear all filters

150254-Thumbnail Image.png
Description
Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students

Conceptual change has been a large part of science education research for several decades due to the fact that it allows teachers to think about what students' preconceptions are and how to change these to the correct scientific conceptions. To have students change their preconceptions teachers need to allow students to confront what they think they know in the presence of the phenomena. Students then collect and analyze evidence pertaining to the phenomena. The goal in the end is for students to reorganize their concepts and change or correct their preconceptions, so that they hold more accurate scientific conceptions. The purpose of this study was to investigate how students' conceptions of the Earth's surface, specifically weathering and erosion, change using the conceptual change framework to guide the instructional decisions. The subjects of the study were a class of 25 seventh grade students. This class received a three-week unit on weathering and erosion that was structured using the conceptual change framework set by Posner, Strike, Hewson, and Gertzog (1982). This framework starts by looking at students' misconceptions, then uses scientific data that students collect to confront their misconceptions. The changes in students' conceptions were measured by a pre concept sketch and post concept sketch. The results of this study showed that the conceptual change framework can modify students' preconceptions of weathering and erosion to correct scientific conceptions. There was statistical significant difference between students' pre concept sketches and post concept sketches scores. After examining the concept sketches, differences were found in how students' concepts had changed from pre to post concept sketch. Further research needs to be done with conceptual change and the geosciences to see if conceptual change is an effective method to use to teach students about the geosciences.
ContributorsTillman, Ashley (Author) / Luft, Julie (Thesis advisor) / Middleton, James (Committee member) / Semken, Steven (Committee member) / Arizona State University (Publisher)
Created2011
150087-Thumbnail Image.png
Description
Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in

Writing scientific explanations is increasingly important, and today's students must have the ability to navigate the writing process to create a persuasive scientific explanation. One aspect of the writing process is receiving feedback before submitting a final draft. This study examined whether middle school students benefit more in the writing process from receiving peer feedback or teacher feedback on rough drafts of scientific explanations. The study also looked at whether males and females reacted differently to the treatment groups. And it examined if content knowledge and the written scientific explanations were correlated. The study looked at 38 sixth and seventh-grade students throughout a 7-week earth science unit on earth systems. The unit had six lessons. One lesson introduced the students to writing scientific explanations, and the other five were inquiry-based content lessons. They wrote four scientific explanations throughout the unit of study and received feedback on all four rough drafts. The sixth-graders received teacher feedback on each explanation and the seventh-graders received peer-feedback after learning how to give constructive feedback. The students also took a multiple-choice pretest/posttest to evaluate content knowledge. The analyses showed that there was no significant difference between the group receiving peer feedback and the group receiving teacher feedback on the final drafts of the scientific explanations. There was, however, a significant effect of practice on the scores of the scientific explanations. Students wrote significantly better with each subsequent scientific explanation. There was no significant difference between males and females based on the treatment they received. There was a significant correlation between the gain in pretest to posttest scores and the scientific explanations and a significant correlation between the posttest scores and the scientific explanations. Content knowledge and written scientific explanations are related. Students who wrote scientific explanations had significant gains in content knowledge.
ContributorsLange, Katie (Author) / Baker, Dale (Thesis advisor) / Megowan, Colleen (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2011
150539-Thumbnail Image.png
Description
This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet

This dissertation describes an investigation of four students' ways of thinking about functions of two variables and rate of change of those two-variable functions. Most secondary, introductory algebra, pre-calculus, and first and second semester calculus courses do not require students to think about functions of more than one variable. Yet vector calculus, calculus on manifolds, linear algebra, and differential equations all rest upon the idea of functions of two (or more) variables. This dissertation contributes to understanding productive ways of thinking that can support students in thinking about functions of two or more variables as they describe complex systems with multiple variables interacting. This dissertation focuses on modeling the way of thinking of four students who participated in a specific instructional sequence designed to explore the limits of their ways of thinking and in turn, develop a robust model that could explain, describe, and predict students' actions relative to specific tasks. The data was collected using a teaching experiment methodology, and the tasks within the teaching experiment leveraged quantitative reasoning and covariation as foundations of students developing a coherent understanding of two-variable functions and their rates of change. The findings of this study indicated that I could characterize students' ways of thinking about two-variable functions by focusing on their use of novice and/or expert shape thinking, and the students' ways of thinking about rate of change by focusing on their quantitative reasoning. The findings suggested that quantitative and covariational reasoning were foundational to a student's ability to generalize their understanding of a single-variable function to two or more variables, and their conception of rate of change to rate of change at a point in space. These results created a need to better understand how experts in the field, such as mathematicians and mathematics educators, thinking about multivariable functions and their rates of change.
ContributorsWeber, Eric David (Author) / Thompson, Patrick (Thesis advisor) / Middleton, James (Committee member) / Carlson, Marilyn (Committee member) / Saldanha, Luis (Committee member) / Milner, Fabio (Committee member) / Van de Sande, Carla (Committee member) / Arizona State University (Publisher)
Created2012
151052-Thumbnail Image.png
Description
From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type

From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type of activity. The lack of an extensive framework and taxonomy regarding the relative effectiveness of these "active" activities makes it difficult to compare and contrast the value of conditions in different studies in terms of student learning. Recently, Chi (2009) proposed a framework of differentiated overt learning activities (DOLA) as active, constructive, and interactive based on their underlying cognitive principles and their effectiveness on students' learning outcomes. The motivating question behind this framework is whether some types of engagement affect learning outcomes more than the others. This work evaluated the effectiveness and applicability of the DOLA framework to learning activities for STEM classes. After classification of overt learning activities as being active, constructive or interactive, I then tested the ICAP hypothesis, which states that student learning is more effective in interactive activities than constructive activities, which are more effective than active activities, which are more effective than passive activities. I conducted two studies (Study 1 and Study 2) to determine how and to what degree differentiated activities affected students' learning outcomes. For both studies, I measured students' knowledge of materials science and engineering concepts. Results for Study 1 showed that students scored higher on all post-class quiz questions after participating in interactive and constructive activities than after the active activities. However, student scores on more difficult, inference questions suggested that interactive activities provided significantly deeper learning than either constructive or active activities. Results for Study 2 showed that students' learning, in terms of gain scores, increased systematically from passive to active to constructive to interactive, as predicted by ICAP. All the increases, from condition to condition, were significant. Verbal analysis of the students' dialogue in interactive condition indicated a strong correlation between the co-construction of knowledge and learning gains. When the statements and responses of each student build upon those of the other, both students benefit from the collaboration. Also, the linear combination of discourse moves was significantly related to the adjusted gain scores with a very high correlation coefficient. Specifically, the elaborate type discourse moves were positively correlated with learning outcomes; whereas the accept type moves were negatively correlated with learning outcomes. Analyses of authentic activities in a STEM classroom showed that they fit within the taxonomy of the DOLA framework. The results of the two studies provided evidence to support the predictions of the ICAP hypothesis.
ContributorsMenekşe, Muhsin (Author) / Chi, Michelene T.H. (Thesis advisor) / Baker, Dale (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
157668-Thumbnail Image.png
Description
This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct

This dissertation reports three studies about what it means for teachers and students to reason with frames of reference: to conceptualize a reference frame, to coordinate multiple frames of reference, and to combine multiple frames of reference. Each paper expands on the previous one to illustrate and utilize the construct of frame of reference. The first paper is a theory paper that introduces the mental actions involved in reasoning with frames of reference. The concept of frames of reference, though commonly used in mathematics and physics, is not described cognitively in any literature. The paper offers a theoretical model of mental actions involved in conceptualizing a frame of reference. Additionally, it posits mental actions that are necessary for a student to reason with multiple frames of reference. It also extends the theory of quantitative reasoning with the construct of a ‘framed quantity’. The second paper investigates how two introductory calculus students who participated in teaching experiments reasoned about changes (variations). The data was analyzed to see to what extent each student conceptualized the variations within a conceptualized frame of reference as described in the first paper. The study found that the extent to which each student conceptualized, coordinated, and combined reference frames significantly affected his ability to reason productively about variations and to make sense of his own answers. The paper ends by analyzing 123 calculus students’ written responses to one of the tasks to build hypotheses about how calculus students reason about variations within frames of reference. The third paper reports how U.S. and Korean secondary mathematics teachers reason with frame of reference on open-response items. An assessment with five frame of reference tasks was given to 539 teachers in the US and Korea, and the responses were coded with rubrics intended to categorize responses by the extent to which they demonstrated conceptualized and coordinated frames of reference. The results show that the theory in the first study is useful in analyzing teachers’ reasoning with frames of reference, and that the items and rubrics function as useful tools in investigating teachers’ meanings for quantities within a frame of reference.
ContributorsJoshua, Surani Ashanthi (Author) / Thompson, Patrick W (Thesis advisor) / Carlson, Marilyn (Committee member) / Roh, Kyeong Hah (Committee member) / Middleton, James (Committee member) / Culbertson, Robert (Committee member) / Arizona State University (Publisher)
Created2019