Matching Items (8)
Filtering by

Clear all filters

152644-Thumbnail Image.png
Description
This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their

This dissertation is presented in two sections. First, I explore two methods of using stable isotope analysis to trace environmental and biogeochemical processes. Second, I present two related studies investigating student understanding of the biogeochemical concepts that underlie part one. Fe and Hg are each biogeochemically important elements in their own way. Fe is a critical nutrient for phytoplankton, while Hg is detrimental to nearly all forms of life. Fe is often a limiting factor in marine phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown mineral dust, but other more soluble sources are more bioavailable. To look for evidence of these non-soil dust sources of Fe to the open ocean, I measured the isotopic composition of aerosol samples collected on Bermuda. I found clear evidence in the fine size fraction of a non-soil dust Fe source, which I conclude is most likely from biomass burning. Widespread adoption of compact fluorescent lamps (CFL) has increased their importance as a source of environmental Hg. Isotope analysis would be a useful tool in quantifying this impact if the isotopic composition of Hg from CFL were known. My measurements show that CFL-Hg is isotopically fractionated, in a unique pattern, during normal operation. This fractionation is large and has a distinctive, mass-independent signature, such that CFL Hg can be uniquely identified from other sources. Misconceptions research in geology has been a very active area of research, but student thinking regarding the related field of biogeochemistry has not yet been studied in detail. From interviews with 40 undergraduates, I identified over 150 specific misconceptions. I also designed a multiple-choice survey (concept inventory) to measure understanding of these same biogeochemistry concepts. I present statistical evidence, based on the Rasch model, for the reliability and validity of this instrument. This instrument will allow teachers and researchers to easily quantify learning outcomes in biogeochemistry and will complement existing concept inventories in geology, chemistry, and biology.
ContributorsMead, Chris (Author) / Anbar, Ariel (Thesis advisor) / Semken, Steven (Committee member) / Shock, Everett (Committee member) / Herckes, Pierre (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2014
150749-Thumbnail Image.png
Description
Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients,

Biological soil crusts (BSCs) are critical components of arid and semiarid environments and provide the primary sources of bioavailable macronutrients and increase micronutrient availability to their surrounding ecosystems. BSCs are composed of a variety of microorganisms that perform a wide range of physiological processes requiring a multitude of bioessential micronutrients, such as iron, copper, and molybdenum. This work investigated the effects of BSC activity on soil solution concentrations of bioessential elements and examined the microbial production of organic chelators, called siderophores. I found that aluminum, vanadium, copper, zinc, and molybdenum were solubilized in the action of crusts, while nickel, zinc, arsenic, and zirconium were immobilized by crust activity. Potassium and manganese displayed behavior consistent with biological removal and mobilization, whereas phosphorus and iron solubility were dominated by abiotic processes. The addition of bioavailable nitrogen altered the effects of BSCs on soil element mobilization. In addition, I found that the biogeochemical activites of BSCs were limited by molybdenum, a fact that likely contributes to co-limitation by nitrogen. I confirmed the presence of siderophore producing microbes in BSCs. Siderophores are low-molecular weight organic compounds that are released by bacteria to increase element solubility and facilitate element uptake; siderophore production is likely the mechanism by which BSCs affect the patterns I observed in soil solution element concentrations. Siderophore producers were distributed across a range of bacterial groups and ecological niches within crusts, suggesting that siderophore production influences the availability of a variety of elements for use in many physiological processes. Four putative siderophore compounds were identified using electrospray ionization mass spectrometry; further attempts to characterize the compounds confirmed two true siderophores. Taken together, the results of my work provide information about micronutrient cycling within crusts that can be applied to BSC conservation and management. Fertilization with certain elements, particularly molybdenum, may prove to be a useful technique to promote BSC growth and development which would help prevent arid land degradation. Furthermore, understanding the effects of BSCs on soil element mobility could be used to develop useful biomarkers for the study of the existence and distribution of crust-like communities on ancient Earth, and perhaps other places, like Mars.
ContributorsNoonan, Kathryn Alexander (Author) / Hartnett, Hilairy (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Shock, Everett (Committee member) / Sharp, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
154002-Thumbnail Image.png
Description
The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the

The discovery and development of novel antibacterial agents is essential to address the rising health concern over antibiotic resistant bacteria. This research investigated the antibacterial activity of a natural clay deposit near Crater Lake, Oregon, that is effective at killing antibiotic resistant human pathogens. The primary rock types in the deposit are andesitic pyroclastic materials, which have been hydrothermally altered into argillic clay zones. High-sulfidation (acidic) alteration produced clay zones with elevated pyrite (18%), illite-smectite (I-S) (70% illite), elemental sulfur, kaolinite and carbonates. Low-sulfidation alteration at neutral pH generated clay zones with lower pyrite concentrations pyrite (4-6%), the mixed-layered I-S clay rectorite (R1, I-S) and quartz.

Antibacterial susceptibility testing reveals that hydrated clays containing pyrite and I-S are effective at killing (100%) of the model pathogens tested (E. coli and S. epidermidis) when pH (< 4.2) and Eh (> 450 mV) promote pyrite oxidation and mineral dissolution, releasing > 1 mM concentrations of Fe2+, Fe3+ and Al3+. However, certain oxidized clay zones containing no pyrite still inhibited bacterial growth. These clays buffered solutions to low pH (< 4.7) and oxidizing Eh (> 400 mV) conditions, releasing lower amounts (< 1 mM) of Fe and Al. The presence of carbonate in the clays eliminated antibacterial activity due to increases in pH, which lower pyrite oxidation and mineral dissolution rates.

The antibacterial mechanism of these natural clays was explored using metal toxicity and genetic assays, along with advanced bioimaging techniques. Antibacterial clays provide a continuous reservoir of Fe2+, Fe3+ and Al3+ that synergistically attack pathogens while generating hydrogen peroxide (H2O¬2). Results show that dissolved Fe2+ and Al3+ are adsorbed to bacterial envelopes, causing protein misfolding and oxidation in the outer membrane. Only Fe2+ is taken up by the cells, generating oxidative stress that damages DNA and proteins. Excess Fe2+ oxidizes inside the cell and precipitates Fe3+-oxides, marking the sites of hydroxyl radical (•OH) generation. Recognition of this novel geochemical antibacterial process should inform designs of new mineral based antibacterial agents and could provide a new economic industry for such clays.
ContributorsMorrison, Keith D (Author) / Williams, Lynda B (Thesis advisor) / Williams, Stanley N (Thesis advisor) / Misra, Rajeev (Committee member) / Shock, Everett (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2015
155943-Thumbnail Image.png
Description
Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections

Affect is a domain of psychology that includes attitudes, emotions, interests, and values. My own affect influenced the choice of topics for my dissertation. After examining asteroid interiors and the Moon’s thermal evolution, I discuss the role of affect in online science education. I begin with asteroids, which are collections of smaller objects held together by gravity and possibly cohesion. These “rubble-pile” objects may experience the Brazil Nut Effect (BNE). When a collection of particles of similar densities, but of different sizes, is shaken, smaller particles will move parallel to the local gravity vector while larger objects will do the opposite. Thus, when asteroids are shaken by impacts, they may experience the BNE as possibly evidenced by large boulders seen on their surfaces. I found while the BNE is plausible on asteroids, it is confined to only the outer layers. The Moon, which formed with a Lunar Magma Ocean (LMO), is the next topic of this work. The LMO is due to the Moon forming rapidly after a giant impact between the proto-Earth and another planetary body. The first 80% of the LMO solidified rapidly at which point a floatation crust formed and slowed solidification of the remaining LMO. Impact bombardment during this cooling process, while an important component, has not been studied in detail. Impacts considered here are from debris generated during the formation of the Moon. I developed a thermal model that incorporates impacts and find that impacts may have either expedited or delayed LMO solidification. Finally, I return to affect to consider the differences in attitudes towards science between students enrolled in fully-online degree programs and those enrolled in traditional, in-person degree programs. I analyzed pre- and post-course survey data from the online astrobiology course Habitable Worlds. Unlike their traditional program counterparts, students enrolled in online programs started the course with better attitudes towards science and also further changed towards more positive attitudes during the course. Along with important conclusions in three research fields, this work aims to demonstrate the importance of affect in both scientific research and science education.
ContributorsDingatantrige Perera, Jude Viranga (Author) / Asphaug, Erik (Thesis advisor) / Semken, Steven (Thesis advisor) / Anbar, Ariel (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Robinson, Mark (Committee member) / Arizona State University (Publisher)
Created2017
155528-Thumbnail Image.png
Description
Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric

Many acidic hot springs in Yellowstone National Park support microbial iron oxidation, reduction, or microbial iron redox cycling (MIRC), as determined by microcosm rate experiments. Microbial dissimilatory iron reduction (DIR) was detected in numerous systems with a pH < 4. Rates of DIR are influenced by the availability of ferric minerals and organic carbon. Microbial iron oxidation (MIO) was detected from pH 2 – 5.5. In systems with abundant Fe (II), dissolved oxygen controls the presence of MIO. Rates generally increase with increased Fe(II) concentrations, but rate constants are not significantly altered by additions of Fe(II). MIRC was detected in systems with abundant ferric mineral deposition.

The rates of microbial and abiological iron oxidation were determined in a variety of cold (T= 9-12°C), circumneutral (pH = 5.5-9) environments in the Swiss Alps. Rates of MIO were measured in systems up to a pH of 7.4; only abiotic processes were detected at higher pH values. Iron oxidizing bacteria (FeOB) were responsible for 39-89% of the net oxidation rate at locations where biological iron oxidation was detected. Members of putative iron oxidizing genera, especially Gallionella, are abundant in systems where MIO was measured. Speciation calculations reveal that ferrous iron typically exists as FeCO30, FeHCO3+, FeSO40 or Fe2+ in these systems. The presence of ferrous (bi)carbonate species appear to increase abiotic iron oxidation rates relative to locations without significant concentrations. This approach, integrating geochemistry, rates, and community composition, reveals biogeochemical conditions that permit MIO, and locations where the abiotic rate is too fast for the biotic process to compete.

For a reaction to provide habitability for microbes in a given environment, it must energy yield and this energy must dissipate slowly enough to remain bioavailable. Thermodynamic boundaries exist at conditions where reactions do not yield energy, and can be quantified by calculations of chemical energy. Likewise, kinetic boundaries exist at conditions where the abiotic reaction rate is so fast that reactants are not bioavailable; this boundary can be quantified by measurements biological and abiological rates. The first habitability maps were drawn, using iron oxidation as an example, by quantifying these boundaries in geochemical space.
ContributorsSt Clair, Brian (Author) / Shock, Everett L (Thesis advisor) / Anbar, Ariel (Committee member) / Garcia-Pichel, Ferran (Committee member) / Hartnett, Hilairy (Committee member) / Arizona State University (Publisher)
Created2017
156998-Thumbnail Image.png
Description
Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred

Ethnogeology is the scientific study of human relationships with the Earth as a system, typically conducted within the context of a specific culture. Indigenous or historically resident people may perceive local places differently from outside observers trained in the Western tradition. Ethnogeologic knowledge includes traditional indigenous knowledge (alternatively referred to as traditional ecological knowledge or TEK), which exceeds the boundaries of non-Indigenous ideas of physical characteristics of the world, tends to be more holistic, and is culturally framed. In this ethnogeological study, I have implemented several methods of participatory rapid assessment (PRA) from the discipline of field ethnography to collect culturally framed geological knowledge, as well to measure the authenticity of the knowledge collected. I constructed a cultural consensus model (CCM) about karst as a domain of knowledge. The study area is located in the karst physiographic region of the Caribbean countries of the Dominican Republic (DR) and Puerto Rico (PR). Ethnogeological data collected and analyzed using CCM satisfied the requirements of a model where I have found statistically significance among participant’s agreement and competence values. Analysis of the competence means in the population of DR and PR results in p < 0.05 validating the methods adapted for this study. I discuss the CCM for the domain of karst (in its majority) that is shared among consultants in the countries of PR and the DR that is in the form of metaphors and other forms of culturally framed descriptions. This work continuing insufficient representation of minority groups such as Indigenous people, Native Americans, Alaska Natives, and Hispanic/Latinxs in the Earth Sciences.
ContributorsGarcia, Angel Antonio (Author) / Semken, Steven (Thesis advisor) / Brandt, Elizabeth, (Committee member) / Shock, Everett (Committee member) / Bowman, Catherine (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2018
Description
Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is

Cyanobacteria and algae living inside carbonate rocks (endoliths) have long been considered major contributors to bioerosion. Some bore into carbonates actively (euendoliths); others simply inhabit pre-existing pore spaces (cryptoendoliths). While naturalistic descriptions based on morphological identification have traditionally driven the field, modern microbial ecology has shown that this approach is insufficient to assess microbial diversity or make functional inferences. I examined endolithic microbiomes using 16S rRNA genes and lipid-soluble photosynthetic pigments as biomarkers, with the goal of reassessing endolith diversity by contrasting traditional and molecular approaches. This led to the unexpected finding that in all 41 littoral carbonate microbiomes investigated around Isla de Mona (Puerto Rico) and Menorca (Spain) populations of anoxygenic phototrophic bacteria (APBs) in the phyla Chloroflexi and Proteobacteria, were abundant, even sometimes dominant over cyanobacteria. This was not only novel, but it suggested that APBs may have been previously misidentified as morphologically similar cyanobacteria, and opened questions about their potential role as euendoliths. To test the euendolithic role of photosynthetic microbes, I set a time-course experiment exposing virgin non-porous carbonate substrate in situ, under the hypothesis that only euendoliths would be able to initially colonize it. This revealed that endolithic microbiomes, similar in biomass to those of mature natural communities, developed within nine months of exposure. And yet, APB populations were still marginal after this period, suggesting that they are secondary colonizers and not euendolithic. However, elucidating colonization dynamics to a sufficiently accurate level of molecular identification among cyanobacteria required the development of a curated cyanobacterial 16S rRNA gene reference database and web tool, Cydrasil. I could then detect that the pioneer euendoliths were in a novel cyanobacterial clade (named UBC), immediately followed by cyanobacteria assignable to known euendoliths. However, as bioerosion proceeded, a diverse set of likely cryptoendolithic cyanobacteria colonized the resulting pore spaces, displacing euendoliths. Endolithic colonization dynamics are thus swift but complex, and involve functionally diverse agents, only some of which are euendoliths. My work contributes a phylogenetically sound, functionally more defined understanding of the carbonate endolithic microbiome, and more specifically, Cydrasil provides a user-friendly framework to routinely move beyond morphology-based cyanobacterial systematics.
ContributorsRoush, Daniel (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Anbar, Ariel (Committee member) / Cadillo-Quiroz, Hinsby (Committee member) / Cao, Huansheng (Committee member) / Arizona State University (Publisher)
Created2020
Description
Wetlands produce approximately one third of total global methane emissions and sequester significant amounts of CO2. Salt marshes make up 5% of total wetland area, and therefore are key factors affecting global methane and CO2 emissions. Many marshes are anthropogenically managed either by diking, draining, impoundment, or otherwise restricting tidal

Wetlands produce approximately one third of total global methane emissions and sequester significant amounts of CO2. Salt marshes make up 5% of total wetland area, and therefore are key factors affecting global methane and CO2 emissions. Many marshes are anthropogenically managed either by diking, draining, impoundment, or otherwise restricting tidal exchange. This causes marsh freshening, increases methane emissions, and releases sequestered carbon, all of which can lead to a warming effect on the climate by the greenhouse effect. We studied the formerly impounded Old County salt marsh, found in the Herring River Estuary of Wellfleet, Massachusetts, USA. The USGS Woods Hole Coastal and Marine Science Center installed two eddy covariance flux towers in the Herring River Estuary. These showed that Old County had low methane fluxes (17 nmol/m2/s) compared to another site in the same estuary (112 nmol/m2/s). The question became; why did Old County experience lower methane emissions? We then did a focused study on the Old County location to investigate. We sampled various biogeochemical parameters including pH, salinity, ORP, dissolved Fe, sulfate, chloride, CH4, DOC, and DIC from pore water samples taken June 2022. We also measured extractable iron from a 2015 archived sediment core at Old County. Specifically, we explored the role of Fe in reducing methane through Fe coupled anaerobic oxidation of methane (Fe-AOM). The porewater depth profiles ranged from 10cm to 242 cm in depth and showed Old County as acidic (pH of 3-6.5), mostly fresh, anoxic, highly reducing, and high in dissolved organic carbon (DOC; 2,000-10,000 μM). I divided the depth profiles into two distinct zones, one above 50 cm and one below 50 cm. Overall, Fe-AOM was likely to occur below 50 cm because dissolved Fe increased as CH4 decreased, which is the expected pattern for Fe-AOM. Also, because the ratio of the calculated methane flux (-0.552 nmol m-2 s-1) to the dissolved Fe (0.072 nmol m-2 s-1) was 7.6, which closely matched the 1 to 8 stoichiometry of the Fe-AOM reactions.
ContributorsEinecker, Rachel (Author) / Hartnett, Hilairy (Thesis director) / Anbar, Ariel (Committee member) / Eagle, Meagan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-12