Matching Items (8)
Filtering by

Clear all filters

153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
133515-Thumbnail Image.png
Description
Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API for Natural Language Processing was incorporated into our game system. User experience elements like gestures, UI color change, and images were used to help guide users in memorizing and building structures. The process to create these elements were streamlined through the VRTK library in Unity. The game has two segments. The first segment is a tutorial level where the user learns to perform motions and in-game actions. The second segment is a game where the user must correctly create a structure by utilizing vocal commands and spatial recognition. A standardized usability test, System Usability Scale, was used to evaluate the effectiveness of the game. A survey was also created in order to evaluate a more descriptive user opinion. Overall, users gave a positive score on the System Usability Scale and slightly positive reviews in the custom survey.
ContributorsOrtega, Excel (Co-author) / Ryan, Alexander (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / School of Art (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135037-Thumbnail Image.png
Description
Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive

Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive way. The Ask Dr. Discovery project seeks to address the challenge of conducting efficient, affordable, and large-scale science museum evaluation via an interactive app aimed at collecting direct visitor feedback through use of the app and through questionnaires that also collect demographics. This thesis investigates how the demographics of metro Phoenix science museum visitors as a whole compare to the Hispanic/Latino population of visitors, and makes use of visitor feedback from Ask Dr. Discovery to provide useful data for science museum evaluation. An analysis of responses revealed that the majority of the participants in the study (n=785) were White (Non-Hispanic) (65.59%), were 36-45 years old (36.18%) and hold a graduate degree (27.64%). Most Hispanic/Latino participants in the study were 26-35 years old (36.36%) and completed some college (28.67%). Most participants from both participant groups have never visited the museum before (32.99% of all participants; 33.57% of all Hispanics/Latinos). Further analysis suggest that museum visits may be independent of age and visitor group size. Visitor interest in science museum exhibits may be independent of their use of free time science-related activities. Data suggests that there was no real difference in exhibit interest across two different versions of the app ("modes"). Analysis of negative visitor feedback showed different question types, questions asked, and time spent on the app. Data log questions revealed the difference in time spent on the app and complexity of questions asked between adults and children, as well as the location of participants in the museum. There was no major correlation between mode type and number of questions asked, and length of use and number of questions asked.
ContributorsFernandez, Ivan (Author) / Bowman, Judd (Thesis director) / Bowman, Catherine (Committee member) / Nelson, Brian (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to

Virtual Reality (hereafter VR) and Mixed Reality (hereafter MR) have opened a new line of applications and possibilities. Amidst a vast network of potential applications, little research has been done to provide real time collaboration capability between users of VR and MR. The idea of this thesis study is to develop and test a real time collaboration system between VR and MR. The system works similar to a Google document where two or more users can see what others are doing i.e. writing, modifying, viewing, etc. Similarly, the system developed during this study will enable users in VR and MR to collaborate in real time.

The study of developing a real-time cross-platform collaboration system between VR and MR takes into consideration a scenario in which multiple device users are connected to a multiplayer network where they are guided to perform various tasks concurrently.

Usability testing was conducted to evaluate participant perceptions of the system. Users were required to assemble a chair in alternating turns; thereafter users were required to fill a survey and give an audio interview. Results collected from the participants showed positive feedback towards using VR and MR for collaboration. However, there are several limitations with the current generation of devices that hinder mass adoption. Devices with better performance factors will lead to wider adoption.
ContributorsSeth, Nayan Sateesh (Author) / Nelson, Brian (Thesis advisor) / Walker, Erin (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05