Matching Items (9)
Filtering by

Clear all filters

153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
150963-Thumbnail Image.png
Description
This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon Matrix

This action research study examines what common perceptions and constructs currently exist in educating adult immigrants in Arizona and considers how might the integration of citizen science with the current English curriculum promote higher order thinking and educational equity in this population. A citizen science project called the Mastodon Matrix Project was introduced to a Level 2 ELAA (English Language Acquisition for Adults) classroom and aligned with the Arizona Adult Standards for ELAA education. Pre and post attitudinal surveys, level tests, and personal meaning maps were implemented to assess student attitudes towards science, views on technology, English skills, and knowledge gained as a result of doing citizen science over a period of 8 weeks.
ContributorsBasham, Melody (Author) / Carlson, David L. (Thesis advisor) / Jordan, Michelle (Committee member) / LePore, Paul (Committee member) / Arizona State University (Publisher)
Created2012
156501-Thumbnail Image.png
Description
As interest in making and STEM learning through making and tinkering continue to rise, understanding the nature, process, and benefits of learning STEM through making have become important topics for research. In addition to understanding the basics of learning through making and tinkering, we need to understand these activities, examine

As interest in making and STEM learning through making and tinkering continue to rise, understanding the nature, process, and benefits of learning STEM through making have become important topics for research. In addition to understanding the basics of learning through making and tinkering, we need to understand these activities, examine their potential benefits, and find out ways to facilitate such learning experiences for all learners with resources that are readily available. This dissertation is a study of children’s learning while tinkering inspired by the Educational Maker Movement. It is motivated by the projects that children playfully create with broken toys, art and craft resources, and other found objects, and the connections of such activities to learning. Adopting a sociocultural lens this dissertation examines eight to twelve-year-olds’ learning while tinkering in collaboration with friends and family, as well as on their own.

Using a case study methodology and studying interactions and transactions between children, materials, tools, and designs this study involves children learning while tinkering over a week-long workshop as well as over the summer in the Southwest. The three hallmarks of this study are, first, an emphasis on sociocultural nature of the development of tinkering projects; second, an emphasis on meaning making while tinkering with materials, tools, and design, and problem-solving; and third, an examination of the continuation of tinkering using newly acquired tools and skills beyond the duration of the workshop. In doing so, this dissertation contributes to the ongoing discussion of children’s playful tinkering, how and why it counts as learning, and STEM learning associated with tinkering. Implications for future learning and the ways in which tinkering connects to children’s everyday fabric of activities are considered.
ContributorsParekh, Priyanka (Author) / Gee, Elisabeth R (Thesis advisor) / Zuiker, Steven (Committee member) / Jordan, Michelle (Committee member) / Arizona State University (Publisher)
Created2018
135037-Thumbnail Image.png
Description
Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive

Museum evaluation is an important process that aims to study an exhibit's effectiveness in engaging visitors and in teaching concepts. Imperatives and methods to strengthen museum evaluation have been suggested and implemented in the past, but ultimately faced several challenges including the collection of visitor feedback in an efficient, non-intrusive way. The Ask Dr. Discovery project seeks to address the challenge of conducting efficient, affordable, and large-scale science museum evaluation via an interactive app aimed at collecting direct visitor feedback through use of the app and through questionnaires that also collect demographics. This thesis investigates how the demographics of metro Phoenix science museum visitors as a whole compare to the Hispanic/Latino population of visitors, and makes use of visitor feedback from Ask Dr. Discovery to provide useful data for science museum evaluation. An analysis of responses revealed that the majority of the participants in the study (n=785) were White (Non-Hispanic) (65.59%), were 36-45 years old (36.18%) and hold a graduate degree (27.64%). Most Hispanic/Latino participants in the study were 26-35 years old (36.36%) and completed some college (28.67%). Most participants from both participant groups have never visited the museum before (32.99% of all participants; 33.57% of all Hispanics/Latinos). Further analysis suggest that museum visits may be independent of age and visitor group size. Visitor interest in science museum exhibits may be independent of their use of free time science-related activities. Data suggests that there was no real difference in exhibit interest across two different versions of the app ("modes"). Analysis of negative visitor feedback showed different question types, questions asked, and time spent on the app. Data log questions revealed the difference in time spent on the app and complexity of questions asked between adults and children, as well as the location of participants in the museum. There was no major correlation between mode type and number of questions asked, and length of use and number of questions asked.
ContributorsFernandez, Ivan (Author) / Bowman, Judd (Thesis director) / Bowman, Catherine (Committee member) / Nelson, Brian (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
155689-Thumbnail Image.png
Description
Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool

Paper assessment remains to be an essential formal assessment method in today's classes. However, it is difficult to track student learning behavior on physical papers. This thesis presents a new educational technology—Web Programming Grading Assistant (WPGA). WPGA not only serves as a grading system but also a feedback delivery tool that connects paper-based assessments to digital space. I designed a classroom study and collected data from ASU computer science classes. I tracked and modeled students' reviewing and reflecting behaviors based on the use of WPGA. I analyzed students' reviewing efforts, in terms of frequency, timing, and the associations with their academic performances. Results showed that students put extra emphasis in reviewing prior to the exams and the efforts demonstrated the desire to review formal assessments regardless of if they were graded for academic performance or for attendance. In addition, all students paid more attention on reviewing quizzes and exams toward the end of semester.
ContributorsHuang, Po-Kai (Author) / Hsiao, I-Han (Thesis advisor) / Nelson, Brian (Committee member) / VanLehn, Kurt (Committee member) / Arizona State University (Publisher)
Created2017
151573-Thumbnail Image.png
Description
The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of

The gameplay experience can be understood as an interaction between player and game design characteristics. A greater understanding of these characteristics can be gained through empirical means. Subsequently, an enhanced knowledge of these characteristics should enable the creation of games that effectively generate desirable experiences for players. The purpose of this study was to investigate the relationships between gameplay enjoyment and the individual characteristics of gaming goal orientations, game usage, and gender. A total of 301 participants were surveyed and the data were analyzed using Structural Equation Modeling (SEM). This led to an expanded Gameplay Enjoyment Model (GEM) with 41 game features, an overarching Enjoyment factor, and 9 specific components, including Challenge, Companionship, Discovery, Fantasy, Fidelity, Identity, Multiplayer, Recognition, and Strategy. Furthermore, the 3x2 educational goal orientation framework was successfully applied to a gaming context. The resulting 3x2 Gaming Goal Orientations (GGO) model consists of 18 statements that describe players' motivations for gaming, which are distributed across the six dimensions of Task-Approach, Task-Avoidance, Self-Approach, Self-Avoidance, Other-Approach, and Other-Avoidance. Lastly, players' individual characteristics were used to predict gameplay enjoyment, which resulted in the formation of the GEM-Individual Characteristics (GEM-IC) model. In GEM-IC, the six GGO dimensions were the strongest predictors. Meanwhile, game usage variables like multiplayer, genre, and platform preference, were minimal to moderate predictors. Although commonly appearing in games research, gender and game time commitment variables failed to predict enjoyment. The results of this study enable important work to be conducted involving game experiences and player characteristics. After several empirical iterations, GEM is considered suitable to employ as a research and design tool. In addition, GGO should be useful to researchers interested in how player motivations relate to gameplay experiences. Moreover, GEM-IC points to several variables that may prove useful in future research. Accordingly, it is posited that researchers will derive more meaningful insights on games and players by investigating detailed, context-specific characteristics as compared to general, demographic ones. Ultimately, it is believed that GEM, GGO, and GEM-IC will be useful tools for researchers and designers who seek to create effective gameplay experiences that meet the needs of players.
ContributorsQuick, John (Author) / Atkinson, Robert (Thesis advisor) / McNamara, Danielle (Committee member) / Nelson, Brian (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158225-Thumbnail Image.png
Description
This study is a qualitative exploration into the roles and social identities that Research Engineering Undergraduates (REU) enacted while engaging the public through designing serious games. At present, the science communication field is searching for ways to train the next generation of scientists to practice public engagement with science in

This study is a qualitative exploration into the roles and social identities that Research Engineering Undergraduates (REU) enacted while engaging the public through designing serious games. At present, the science communication field is searching for ways to train the next generation of scientists to practice public engagement with science in a way that fosters dialogue with the public, however, little research has been done on training undergraduates in this regard. This exploratory study seeks to determine what opportunities a game design project in a summer program in solar energy engineering research provides undergraduates to that end. The project includes REUs designing games through a facilitated design process and then sharing them with the public at arts festivals. Through discourse analysis, data was analyzed through the lens of cohesion in order to interpret what roles and social identities REUs enacted as well as members of the public who play the games. Based on the analysis of 12 REUs and 39 player participants, findings indicate REUs most often enacted the science game designer social identity and science educator role during the public event. Less often, REUs enacted a sociotechnical role to determine the player's relationship to science/solar energy. Also, less often did they position themselves directly as scientists. For the most part, REUs reproduced the dissemination model of science communication in an interactive way and with an element of reflexivity. However, during public engagement events, dialogue with the public occurred when REUs enacted open-ended roles that enabled members of the public to contribute to the conversation by assuming a range of roles and social identities rather than positioning them into a single role. Dialogue was also supported when REUs were responsive and shifted their role/ social identity to correspond with the public’s enactment. Some players enacted a local Arizonan social identity in response to the open-ended role and game content about Arizona’s solar energy. The project afforded REUs the opportunity to learn illustration and reformulation to communicate science concepts. Also, REUs referenced their game during illustration and reformulation, using it as a tool to teach science, be a science game designer, and other enactments. More research is needed to determine how science, technology, engineering, and math (STEM) undergraduates learning science communication can design serious games and conduct player reflections in such a way to promote dialogue to a greater degree than observed in this study.
ContributorsEvans, Mathew (Author) / Jordan, Michelle (Thesis advisor) / Koro, Mirka (Thesis advisor) / Jalbert, Kirk (Committee member) / Arizona State University (Publisher)
Created2020
161507-Thumbnail Image.png
Description
Today’s science education has been highly criticized in the United States despite reform efforts that attempt to promote more wholistic and integrated goals for teaching and learning science, which include both the understanding of key content and the acquisition of scientific skills. Outdoor education may be a means with which

Today’s science education has been highly criticized in the United States despite reform efforts that attempt to promote more wholistic and integrated goals for teaching and learning science, which include both the understanding of key content and the acquisition of scientific skills. Outdoor education may be a means with which to better engage students in science, but educators often find this type of teaching difficult to adopt for a variety of reasons. Nature journaling may be a useful access point to outdoor education for teachers experiencing those barriers. This study examines a six-month implementation of nature journaling activities in a high school Ecology & Animal Behavior course. It was found that students completing nature journaling in this classroom utilized both scientific knowledge and scientific practices in their work, and that instances and depth of these demonstrations increased as a general trend over time, which may be considered successful learning according to situativity theory. Further, students communicated their understanding of what they were accomplishing through their journal work as highly beneficial, though their own perceptions of their competencies in scientific practices did not change. Though additional research needs to be conducted, this study points to a potentially positive relationship between modern science education and outdoor learning through nature journal activities.
ContributorsSuloff, Sarah (Author) / Weinberg, Andrea (Thesis advisor) / Jordan, Michelle (Committee member) / Franz, Nico (Committee member) / Arizona State University (Publisher)
Created2021