Matching Items (2)
Filtering by

Clear all filters

168488-Thumbnail Image.png
Description
Tissues within the body enable proper function throughout an individual’s life. After severe injury or disease, many tissues do not fully heal without surgical intervention. The current surgical procedures aimed to repair tissues are not sufficient to fully restore functionality. To address these challenges, current research is seeking new tissue

Tissues within the body enable proper function throughout an individual’s life. After severe injury or disease, many tissues do not fully heal without surgical intervention. The current surgical procedures aimed to repair tissues are not sufficient to fully restore functionality. To address these challenges, current research is seeking new tissue engineering approaches to promote tissue regeneration and functional recovery. Of particular interest, biomaterial scaffolds are designed to induce tissue regeneration by mimicking the biophysical and biochemical aspects of native tissue. While many scaffolds have been designed with homogenous properties, many tissues are heterogenous in nature. Thus, fabricating scaffolds that mimic these complex tissue properties is critical for inducing proper healing after injury. Within this dissertation, scaffolds were designed and fabricated to mimic the heterogenous properties of the following tissues: (1) the vocal fold, which is a complex 3D structure with spatially controlled mechanical properties; and (2) musculoskeletal tissue interfaces, which are fibrous tissues with highly organized gradients in structure and chemistry. A tri-layered hydrogel scaffold was fabricated through layer-by-layer stacking to mimic the mechanical structure of the vocal fold. Furthermore, magnetically-assisted electrospinning and thiol-norbornene photochemistry was used to fabricate fibrous scaffolds that mimic the structural and chemical organization of musculoskeletal interfacial tissues. The work presented in this dissertation further advances the tissue engineering field by using innovative techniques to design scaffolds that recapitulate the natural complexity of native tissues.
ContributorsTindell, Raymond Kevin (Author) / Holloway, Julianne (Thesis advisor) / Green, Matthew (Committee member) / Pizziconi, Vincent (Committee member) / Stephanopoulos, Nicholas (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2021
190843-Thumbnail Image.png
Description
In recent years, researchers have employed DNA and protein nanotechnology to develop nanomaterials for applications in the fields of regenerative medicine, gene therapeutic, and materials science. In the current state of research, developing a biomimetic approach to fabricate an extracellular matrix (ECM)-like material has faced key challenges. The difficulty arises

In recent years, researchers have employed DNA and protein nanotechnology to develop nanomaterials for applications in the fields of regenerative medicine, gene therapeutic, and materials science. In the current state of research, developing a biomimetic approach to fabricate an extracellular matrix (ECM)-like material has faced key challenges. The difficulty arises due to achieving spatiotemporal complexity that rivals the native ECM. Attempts to replicate the ECM using hydrogels have been limited in their ability to recapitulate its structural and functional properties. Moreover, the biological activities of the ECM, such as cell adhesion, proliferation, and differentiation, are mediated by ECM proteins and their interactions with cells, making it difficult to reproduce these activities in vitro.Thus, the work presented in my dissertation represents efforts to develop DNA and protein-based materials that mimic the biological properties of the ECM. The research involves the design, synthesis, and characterization of nanomaterials that exhibit unique physical, chemical, and mechanical properties. Two specific aspects of the biomimetic system have been to include (1) a modular protein building block to change the bioactivity of the system and (2) to temporally control the self-assembly of the protein nanofiber using different coiled coil mechanisms. The protein nanofibers were characterized using atomic force microscopy, transmission electron microscopy, and super-resolution DNA Point Accumulation for Imaging in Nanoscale Topology. The domains chosen are the fibronectin domains, Fn-III10, Fn-III9-10, and Fn-III12-14, with bioactivity such as cell adhesion and growth factor binding. To extend this approach, these cys-nanofibers have been embedded in a hyaluronic acid scaffold to enable bioactivity and fibrous morphologies. Nanofiber integration within the HA gel has been shown to promote tunable mechanical properties and architectures, in addition to promoting a temporal display of the protein nanofibers. The hydrogels were characterized using scanning electron microscopy, mechanical compression testing, and fluorescence microscopy. The findings in this dissertation highlight the promise of biomimetic DNA and protein nanomaterials as a versatile approach for developing next-generation materials with unprecedented properties and functions. These findings continue to push the boundaries of what is possible in nanotechnology, leading to new discoveries that will have a significant impact on society.
ContributorsBernal-Chanchavac, Julio (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Jones, Anne (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023