Matching Items (13)
Filtering by

Clear all filters

168287-Thumbnail Image.png
Description
Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears

Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears in all approaches is to encode the nodes in the graph (or the entire graph) as low-dimensional vectors also known as embeddings, prior to carrying out downstream task-specific learning. It is crucial to eliminate hand-crafted features and instead directly incorporate the structural inductive bias into the deep learning architectures. In this dissertation, deep learning models that directly operate on graph structured data are proposed for effective representation learning. A literature review on existing graph representation learning is provided in the beginning of the dissertation. The primary focus of dissertation is on building novel graph neural network architectures that are robust against adversarial attacks. The proposed graph neural network models are extended to multiplex graphs (heterogeneous graphs). Finally, a relational neural network model is proposed to operate on a human structural connectome. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed graph neural network models, approaches, and architectures demonstrate significant performance improvements in comparison to the existing state-of-the-art graph embedding strategies.
ContributorsShanthamallu, Uday Shankar (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2021
190765-Thumbnail Image.png
Description
Speech analysis for clinical applications has emerged as a burgeoning field, providing valuable insights into an individual's physical and physiological state. Researchers have explored speech features for clinical applications, such as diagnosing, predicting, and monitoring various pathologies. Before presenting the new deep learning frameworks, this thesis introduces a study on

Speech analysis for clinical applications has emerged as a burgeoning field, providing valuable insights into an individual's physical and physiological state. Researchers have explored speech features for clinical applications, such as diagnosing, predicting, and monitoring various pathologies. Before presenting the new deep learning frameworks, this thesis introduces a study on conventional acoustic feature changes in subjects with post-traumatic headache (PTH) attributed to mild traumatic brain injury (mTBI). This work demonstrates the effectiveness of using speech signals to assess the pathological status of individuals. At the same time, it highlights some of the limitations of conventional acoustic and linguistic features, such as low repeatability and generalizability. Two critical characteristics of speech features are (1) good robustness, as speech features need to generalize across different corpora, and (2) high repeatability, as speech features need to be invariant to all confounding factors except the pathological state of targets. This thesis presents two research thrusts in the context of speech signals in clinical applications that focus on improving the robustness and repeatability of speech features, respectively. The first thrust introduces a deep learning framework to generate acoustic feature embeddings sensitive to vocal quality and robust across different corpora. A contrastive loss combined with a classification loss is used to train the model jointly, and data-warping techniques are employed to improve the robustness of embeddings. Empirical results demonstrate that the proposed method achieves high in-corpus and cross-corpus classification accuracy and generates good embeddings sensitive to voice quality and robust across different corpora. The second thrust introduces using the intra-class correlation coefficient (ICC) to evaluate the repeatability of embeddings. A novel regularizer, the ICC regularizer, is proposed to regularize deep neural networks to produce embeddings with higher repeatability. This ICC regularizer is implemented and applied to three speech applications: a clinical application, speaker verification, and voice style conversion. The experimental results reveal that the ICC regularizer improves the repeatability of learned embeddings compared to the contrastive loss, leading to enhanced performance in downstream tasks.
ContributorsZhang, Jianwei (Author) / Jayasuriya, Suren (Thesis advisor) / Berisha, Visar (Thesis advisor) / Liss, Julie (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2023
187456-Thumbnail Image.png
Description
The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target

The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target distributions and (iv) belief on existing metrics as reliable indicators of performance. When any of these assumptions are violated, the models exhibit brittleness producing adversely varied behavior. This dissertation focuses on methods for accurate model design and characterization that enhance process reliability when certain assumptions are not met. With the need to safely adopt artificial intelligence tools in practice, it is vital to build reliable failure detectors that indicate regimes where the model must not be invoked. To that end, an error predictor trained with a self-calibration objective is developed to estimate loss consistent with the underlying model. The properties of the error predictor are described and their utility in supporting introspection via feature importances and counterfactual explanations is elucidated. While such an approach can signal data regime changes, it is critical to calibrate models using regimes of inlier (training) and outlier data to prevent under- and over-generalization in models i.e., incorrectly identifying inliers as outliers and vice-versa. By identifying the space for specifying inliers and outliers, an anomaly detector that can effectively flag data of varying semantic complexities in medical imaging is next developed. Uncertainty quantification in deep learning models involves identifying sources of failure and characterizing model confidence to enable actionability. A training strategy is developed that allows the accurate estimation of model uncertainties and its benefits are demonstrated for active learning and generalization gap prediction. This helps identify insufficiently sampled regimes and representation insufficiency in models. In addition, the task of deep inversion under data scarce scenarios is considered, which in practice requires a prior to control the optimization. By identifying limitations in existing work, data priors powered by generative models and deep model priors are designed for audio restoration. With relevant empirical studies on a variety of benchmarks, the need for such design strategies is demonstrated.
ContributorsNarayanaswamy, Vivek Sivaraman (Author) / Spanias, Andreas (Thesis advisor) / J. Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2023
191748-Thumbnail Image.png
Description
Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize

Millimeter-wave (mmWave) and sub-terahertz (sub-THz) systems aim to utilize the large bandwidth available at these frequencies. This has the potential to enable several future applications that require high data rates, such as autonomous vehicles and digital twins. These systems, however, have several challenges that need to be addressed to realize their gains in practice. First, they need to deploy large antenna arrays and use narrow beams to guarantee sufficient receive power. Adjusting the narrow beams of the large antenna arrays incurs massive beam training overhead. Second, the sensitivity to blockages is a key challenge for mmWave and THz networks. Since these networks mainly rely on line-of-sight (LOS) links, sudden link blockages highly threaten the reliability of the networks. Further, when the LOS link is blocked, the network typically needs to hand off the user to another LOS basestation, which may incur critical time latency, especially if a search over a large codebook of narrow beams is needed. A promising way to tackle both these challenges lies in leveraging additional side information such as visual, LiDAR, radar, and position data. These sensors provide rich information about the wireless environment, which can be utilized for fast beam and blockage prediction. This dissertation presents a machine-learning framework for sensing-aided beam and blockage prediction. In particular, for beam prediction, this work proposes to utilize visual and positional data to predict the optimal beam indices. For the first time, this work investigates the sensing-aided beam prediction task in a real-world vehicle-to-infrastructure and drone communication scenario. Similarly, for blockage prediction, this dissertation proposes a multi-modal wireless communication solution that utilizes bimodal machine learning to perform proactive blockage prediction and user hand-off. Evaluations on both real-world and synthetic datasets illustrate the promising performance of the proposed solutions and highlight their potential for next-generation communication and sensing systems.
ContributorsCharan, Gouranga (Author) / Alkhateeb, Ahmed (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Turaga, Pavan (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
156587-Thumbnail Image.png
Description
Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance.

Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction.

We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems.

In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.
ContributorsSong, Huan (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2018
156610-Thumbnail Image.png
Description
Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such

Deep neural networks (DNN) have shown tremendous success in various cognitive tasks, such as image classification, speech recognition, etc. However, their usage on resource-constrained edge devices has been limited due to high computation and large memory requirement.

To overcome these challenges, recent works have extensively investigated model compression techniques such as element-wise sparsity, structured sparsity and quantization. While most of these works have applied these compression techniques in isolation, there have been very few studies on application of quantization and structured sparsity together on a DNN model.

This thesis co-optimizes structured sparsity and quantization constraints on DNN models during training. Specifically, it obtains optimal setting of 2-bit weight and 2-bit activation coupled with 4X structured compression by performing combined exploration of quantization and structured compression settings. The optimal DNN model achieves 50X weight memory reduction compared to floating-point uncompressed DNN. This memory saving is significant since applying only structured sparsity constraints achieves 2X memory savings and only quantization constraints achieves 16X memory savings. The algorithm has been validated on both high and low capacity DNNs and on wide-sparse and deep-sparse DNN models. Experiments demonstrated that deep-sparse DNN outperforms shallow-dense DNN with varying level of memory savings depending on DNN precision and sparsity levels. This work further proposed a Pareto-optimal approach to systematically extract optimal DNN models from a huge set of sparse and dense DNN models. The resulting 11 optimal designs were further evaluated by considering overall DNN memory which includes activation memory and weight memory. It was found that there is only a small change in the memory footprint of the optimal designs corresponding to the low sparsity DNNs. However, activation memory cannot be ignored for high sparsity DNNs.
ContributorsSrivastava, Gaurav (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156936-Thumbnail Image.png
Description
In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional

In recent years, conventional convolutional neural network (CNN) has achieved outstanding performance in image and speech processing applications. Unfortunately, the pooling operation in CNN ignores important spatial information which is an important attribute in many applications. The recently proposed capsule network retains spatial information and improves the capabilities of traditional CNN. It uses capsules to describe features in multiple dimensions and dynamic routing to increase the statistical stability of the network.

In this work, we first use capsule network for overlapping digit recognition problem. We evaluate the performance of the network with respect to recognition accuracy, convergence and training time per epoch. We show that capsule network achieves higher accuracy when training set size is small. When training set size is larger, capsule network and conventional CNN have comparable recognition accuracy. The training time per epoch for capsule network is longer than conventional CNN because of the dynamic routing algorithm. An analysis of the GPU timing shows that adjusting the capsule structure can help decrease the time complexity of the dynamic routing algorithm significantly.

Next, we design a capsule network for speech recognition, specifically, overlapping word recognition. We use both capsule network and conventional CNN to recognize 2 overlapping words in speech files created from 5 word classes. We show that capsule network achieves a considerably higher recognition accuracy (96.92%) compared to conventional CNN (85.19%). Our results show that capsule network recognizes overlapping word by recognizing each individual word in the speech. We also verify the scalability of capsule network by increasing the number of word classes from 5 to 10. Capsule network still shows a high recognition accuracy of 95.42% in case of 10 words while the accuracy of conventional CNN decreases sharply to 73.18%.
ContributorsXiong, Yan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Berisha, Visar (Thesis advisor) / Weng, Yang (Committee member) / Arizona State University (Publisher)
Created2018
157015-Thumbnail Image.png
Description
Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data,

Deep learning (DL) has proved itself be one of the most important developements till date with far reaching impacts in numerous fields like robotics, computer vision, surveillance, speech processing, machine translation, finance, etc. They are now widely used for countless applications because of their ability to generalize real world data, robustness to noise in previously unseen data and high inference accuracy. With the ability to learn useful features from raw sensor data, deep learning algorithms have out-performed tradinal AI algorithms and pushed the boundaries of what can be achieved with AI. In this work, we demonstrate the power of deep learning by developing a neural network to automatically detect cough instances from audio recorded in un-constrained environments. For this, 24 hours long recordings from 9 dierent patients is collected and carefully labeled by medical personel. A pre-processing algorithm is proposed to convert event based cough dataset to a more informative dataset with start and end of coughs and also introduce data augmentation for regularizing the training procedure. The proposed neural network achieves 92.3% leave-one-out accuracy on data captured in real world.

Deep neural networks are composed of multiple layers that are compute/memory intensive. This makes it difficult to execute these algorithms real-time with low power consumption using existing general purpose computers. In this work, we propose hardware accelerators for a traditional AI algorithm based on random forest trees and two representative deep convolutional neural networks (AlexNet and VGG). With the proposed acceleration techniques, ~ 30x performance improvement was achieved compared to CPU for random forest trees. For deep CNNS, we demonstrate that much higher performance can be achieved with architecture space exploration using any optimization algorithms with system level performance and area models for hardware primitives as inputs and goal of minimizing latency with given resource constraints. With this method, ~30GOPs performance was achieved for Stratix V FPGA boards.

Hardware acceleration of DL algorithms alone is not always the most ecient way and sucient to achieve desired performance. There is a huge headroom available for performance improvement provided the algorithms are designed keeping in mind the hardware limitations and bottlenecks. This work achieves hardware-software co-optimization for Non-Maximal Suppression (NMS) algorithm. Using the proposed algorithmic changes and hardware architecture

With CMOS scaling coming to an end and increasing memory bandwidth bottlenecks, CMOS based system might not scale enough to accommodate requirements of more complicated and deeper neural networks in future. In this work, we explore RRAM crossbars and arrays as compact, high performing and energy efficient alternative to CMOS accelerators for deep learning training and inference. We propose and implement RRAM periphery read and write circuits and achieved ~3000x performance improvement in online dictionary learning compared to CPU.

This work also examines the realistic RRAM devices and their non-idealities. We do an in-depth study of the effects of RRAM non-idealities on inference accuracy when a pretrained model is mapped to RRAM based accelerators. To mitigate this issue, we propose Random Sparse Adaptation (RSA), a novel scheme aimed at tuning the model to take care of the faults of the RRAM array on which it is mapped. Our proposed method can achieve inference accuracy much higher than what traditional Read-Verify-Write (R-V-W) method could achieve. RSA can also recover lost inference accuracy 100x ~ 1000x faster compared to R-V-W. Using 32-bit high precision RSA cells, we achieved ~10% higher accuracy using fautly RRAM arrays compared to what can be achieved by mapping a deep network to an 32 level RRAM array with no variations.
ContributorsMohanty, Abinash (Author) / Cao, Yu (Thesis advisor) / Seo, Jae-Sun (Committee member) / Vrudhula, Sarma (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2018
155155-Thumbnail Image.png
Description
Compressed sensing (CS) is a novel approach to collecting and analyzing data of all types. By exploiting prior knowledge of the compressibility of many naturally-occurring signals, specially designed sensors can dramatically undersample the data of interest and still achieve high performance. However, the generated data are pseudorandomly mixed and

Compressed sensing (CS) is a novel approach to collecting and analyzing data of all types. By exploiting prior knowledge of the compressibility of many naturally-occurring signals, specially designed sensors can dramatically undersample the data of interest and still achieve high performance. However, the generated data are pseudorandomly mixed and must be processed before use. In this work, a model of a single-pixel compressive video camera is used to explore the problems of performing inference based on these undersampled measurements. Three broad types of inference from CS measurements are considered: recovery of video frames, target tracking, and object classification/detection. Potential applications include automated surveillance, autonomous navigation, and medical imaging and diagnosis.



Recovery of CS video frames is far more complex than still images, which are known to be (approximately) sparse in a linear basis such as the discrete cosine transform. By combining sparsity of individual frames with an optical flow-based model of inter-frame dependence, the perceptual quality and peak signal to noise ratio (PSNR) of reconstructed frames is improved. The efficacy of this approach is demonstrated for the cases of \textit{a priori} known image motion and unknown but constant image-wide motion.



Although video sequences can be reconstructed from CS measurements, the process is computationally costly. In autonomous systems, this reconstruction step is unnecessary if higher-level conclusions can be drawn directly from the CS data. A tracking algorithm is described and evaluated which can hold target vehicles at very high levels of compression where reconstruction of video frames fails. The algorithm performs tracking by detection using a particle filter with likelihood given by a maximum average correlation height (MACH) target template model.



Motivated by possible improvements over the MACH filter-based likelihood estimation of the tracking algorithm, the application of deep learning models to detection and classification of compressively sensed images is explored. In tests, a Deep Boltzmann Machine trained on CS measurements outperforms a naive reconstruct-first approach.



Taken together, progress in these three areas of CS inference has the potential to lower system cost and improve performance, opening up new applications of CS video cameras.
ContributorsBraun, Henry Carlton (Author) / Turaga, Pavan K (Thesis advisor) / Spanias, Andreas S (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2016
158684-Thumbnail Image.png
Description
The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On

The advances of Deep Learning (DL) achieved recently have successfully demonstrated its great potential of surpassing or close to human-level performance across multiple domains. Consequently, there exists a rising demand to deploy state-of-the-art DL algorithms, e.g., Deep Neural Networks (DNN), in real-world applications to release labors from repetitive work. On the one hand, the impressive performance achieved by the DNN normally accompanies with the drawbacks of intensive memory and power usage due to enormous model size and high computation workload, which significantly hampers their deployment on the resource-limited cyber-physical systems or edge devices. Thus, the urgent demand for enhancing the inference efficiency of DNN has also great research interests across various communities. On the other hand, scientists and engineers still have insufficient knowledge about the principles of DNN which makes it mostly be treated as a black-box. Under such circumstance, DNN is like "the sword of Damocles" where its security or fault-tolerance capability is an essential concern which cannot be circumvented.

Motivated by the aforementioned concerns, this dissertation comprehensively investigates the emerging efficiency and security issues of DNNs, from both software and hardware design perspectives. From the efficiency perspective, as the foundation technique for efficient inference of target DNN, the model compression via quantization is elaborated. In order to maximize the inference performance boost, the deployment of quantized DNN on the revolutionary Computing-in-Memory based neural accelerator is presented in a cross-layer (device/circuit/system) fashion. From the security perspective, the well known adversarial attack is investigated spanning from its original input attack form (aka. Adversarial example generation) to its parameter attack variant.
Contributorshe, zhezhi (Author) / Fan, Deliang (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2020