Matching Items (18)
Filtering by

Clear all filters

157443-Thumbnail Image.png
Description
Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models

Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose a new model containing a Hybrid Convolutional Neural Network with a Fusion Layer. The Fusion Layer utilizes a combination of the knowledge obtained from two different domains for enhanced feature extraction from the in-the-wild images. I tested my network on two publicly available in-the-wild datasets namely RAF-DB and AffectNet. Next, I tested my trained model on CK+ dataset for the cross-database evaluation study. I prove that my model achieves comparable results with state-of-the-art methods. I argue that it can perform well on such datasets because it learns the features from two different domains rather than a single domain. Last, I present a real-time facial expression recognition system as a part of this work where the images are captured in real-time using laptop camera and passed to the model for obtaining a facial expression label for it. It indicates that the proposed model has low processing time and can produce output almost instantly.
ContributorsChhabra, Sachin (Author) / Li, Baoxin (Thesis advisor) / Venkateswara, Hemanth (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
Description
Increased LV wall thickness is frequently encountered in transthoracicechocardiography (TTE). While accurate and early diagnosis is clinically important, given the differences in available therapeutic options and prognosis, an extensive workup is often required for establishing the diagnosis. I propose the first echo-based, automated deep learning model with a fusion architecture to facilitate the

Increased LV wall thickness is frequently encountered in transthoracicechocardiography (TTE). While accurate and early diagnosis is clinically important, given the differences in available therapeutic options and prognosis, an extensive workup is often required for establishing the diagnosis. I propose the first echo-based, automated deep learning model with a fusion architecture to facilitate the evaluation and diagnosis of increased left ventricular (LV) wall thickness. Patients with an established diagnosis for increased LV wall thickness (hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HTN)/others) between 1/2015 to 11/2019 at Mayo Clinic Arizona were identified. The cohort was divided into 80%/10%/10% for training, validation, and testing sets, respectively. Six baseline TTE views were used to optimize a pre-trained InceptionResnetV2 model, each model output was used to train a meta-learner under a fusion architecture. Model performance was assessed by multiclass area under the receiver operating characteristic curve (AUROC). A total of 586 patients were used for the final analysis (194 HCM, 201 CA, and 191 HTN/others). The mean age was 55.0 years, and 57.8% were male. Among the individual view-dependent models, the apical 4 chamber model had the best performance (AUROC: HCM: 0.94, CA: 0.73, and HTN/other: 0.87). The final fusion model outperformed all the view-dependent models (AUROC: CA: 0.90, HCM: 0.93, and HTN/other: 0.92). I successfully established an automatic end-to-end deep learning model framework that accurately differentiates the major etiologies of increased LV wall thickness, including HCM and CA from the background of HTN/other diagnoses.
ContributorsLi, James Shuyue (Author) / Patel, Bhavik (Thesis advisor) / Li, Baoxin (Thesis advisor) / Banerjee, Imon (Committee member) / Arizona State University (Publisher)
Created2022
156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018
156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018
157202-Thumbnail Image.png
Description
In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an

In this thesis, a new approach to learning-based planning is presented where critical regions of an environment with low probability measure are learned from a given set of motion plans. Critical regions are learned using convolutional neural networks (CNN) to improve sampling processes for motion planning (MP).

In addition to an identification network, a new sampling-based motion planner, Learn and Link, is introduced. This planner leverages critical regions to overcome the limitations of uniform sampling while still maintaining guarantees of correctness inherent to sampling-based algorithms. Learn and Link is evaluated against planners from the Open Motion Planning Library (OMPL) on an extensive suite of challenging navigation planning problems. This work shows that critical areas of an environment are learnable, and can be used by Learn and Link to solve MP problems with far less planning time than existing sampling-based planners.
ContributorsMolina, Daniel, M.S (Author) / Srivastava, Siddharth (Thesis advisor) / Li, Baoxin (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2019
155085-Thumbnail Image.png
Description
High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such

High-level inference tasks in video applications such as recognition, video retrieval, and zero-shot classification have become an active research area in recent years. One fundamental requirement for such applications is to extract high-quality features that maintain high-level information in the videos.

Many video feature extraction algorithms have been purposed, such as STIP, HOG3D, and Dense Trajectories. These algorithms are often referred to as “handcrafted” features as they were deliberately designed based on some reasonable considerations. However, these algorithms may fail when dealing with high-level tasks or complex scene videos. Due to the success of using deep convolution neural networks (CNNs) to extract global representations for static images, researchers have been using similar techniques to tackle video contents. Typical techniques first extract spatial features by processing raw images using deep convolution architectures designed for static image classifications. Then simple average, concatenation or classifier-based fusion/pooling methods are applied to the extracted features. I argue that features extracted in such ways do not acquire enough representative information since videos, unlike images, should be characterized as a temporal sequence of semantically coherent visual contents and thus need to be represented in a manner considering both semantic and spatio-temporal information.

In this thesis, I propose a novel architecture to learn semantic spatio-temporal embedding for videos to support high-level video analysis. The proposed method encodes video spatial and temporal information separately by employing a deep architecture consisting of two channels of convolutional neural networks (capturing appearance and local motion) followed by their corresponding Fully Connected Gated Recurrent Unit (FC-GRU) encoders for capturing longer-term temporal structure of the CNN features. The resultant spatio-temporal representation (a vector) is used to learn a mapping via a Fully Connected Multilayer Perceptron (FC-MLP) to the word2vec semantic embedding space, leading to a semantic interpretation of the video vector that supports high-level analysis. I evaluate the usefulness and effectiveness of this new video representation by conducting experiments on action recognition, zero-shot video classification, and semantic video retrieval (word-to-video) retrieval, using the UCF101 action recognition dataset.
ContributorsHu, Sheng-Hung (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Liang, Jianming (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2016
154885-Thumbnail Image.png
Description
Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their

Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their aesthetic quality instead of binary-categorizing them. Furthermore, in such applications, it may be possible that all images belong to the same category. Hence determining the aesthetic ranking of the images is more appropriate. To this end, a novel problem of ranking images with respect to their aesthetic quality is formulated in this work. A new data-set of image pairs with relative labels is constructed by carefully selecting images from the popular AVA data-set. Unlike in aesthetics classification, there is no single threshold which would determine the ranking order of the images across the entire data-set.

This problem is attempted using a deep neural network based approach that is trained on image pairs by incorporating principles from relative learning. Results show that such relative training procedure allows the network to rank the images with a higher accuracy than a state-of-art network trained on the same set of images using binary labels. Further analyzing the results show that training a model using the image pairs learnt better aesthetic features than training on same number of individual binary labelled images.

Additionally, an attempt is made at enhancing the performance of the system by incorporating saliency related information. Given an image, humans might fixate their vision on particular parts of the image, which they might be subconsciously intrigued to. I therefore tried to utilize the saliency information both stand-alone as well as in combination with the global and local aesthetic features by performing two separate sets of experiments. In both the cases, a standard saliency model is chosen and the generated saliency maps are convoluted with the images prior to passing them to the network, thus giving higher importance to the salient regions as compared to the remaining. Thus generated saliency-images are either used independently or along with the global and the local features to train the network. Empirical results show that the saliency related aesthetic features might already be learnt by the network as a sub-set of the global features from automatic feature extraction, thus proving the redundancy of the additional saliency module.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Davulcu, Hasan (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2016
155339-Thumbnail Image.png
Description
The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences

The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations.

The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.
ContributorsDemakethepalli Venkateswara, Hemanth (Author) / Panchanathan, Sethuraman (Thesis advisor) / Li, Baoxin (Committee member) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2017
155900-Thumbnail Image.png
Description
Compressive sensing theory allows to sense and reconstruct signals/images with lower sampling rate than Nyquist rate. Applications in resource constrained environment stand to benefit from this theory, opening up many possibilities for new applications at the same time. The traditional inference pipeline for computer vision sequence reconstructing the image from

Compressive sensing theory allows to sense and reconstruct signals/images with lower sampling rate than Nyquist rate. Applications in resource constrained environment stand to benefit from this theory, opening up many possibilities for new applications at the same time. The traditional inference pipeline for computer vision sequence reconstructing the image from compressive measurements. However,the reconstruction process is a computationally expensive step that also provides poor results at high compression rate. There have been several successful attempts to perform inference tasks directly on compressive measurements such as activity recognition. In this thesis, I am interested to tackle a more challenging vision problem - Visual question answering (VQA) without reconstructing the compressive images. I investigate the feasibility of this problem with a series of experiments, and I evaluate proposed methods on a VQA dataset and discuss promising results and direction for future work.
ContributorsHuang, Li-Chin (Author) / Turaga, Pavan (Thesis advisor) / Yang, Yezhou (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2017
156219-Thumbnail Image.png
Description
Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive

Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive process in terms of time, labor and human expertise.

Thus, developing algorithms that minimize the human effort in training deep models

is of immense practical importance. Active learning algorithms automatically identify

salient and exemplar samples from large amounts of unlabeled data and can augment

maximal information to supervised learning models, thereby reducing the human annotation

effort in training machine learning models. The goal of this dissertation is to

fuse ideas from deep learning and active learning and design novel deep active learning

algorithms. The proposed learning methodologies explore diverse label spaces to

solve different computer vision applications. Three major contributions have emerged

from this work; (i) a deep active framework for multi-class image classication, (ii)

a deep active model with and without label correlation for multi-label image classi-

cation and (iii) a deep active paradigm for regression. Extensive empirical studies

on a variety of multi-class, multi-label and regression vision datasets corroborate the

potential of the proposed methods for real-world applications. Additional contributions

include: (i) a multimodal emotion database consisting of recordings of facial

expressions, body gestures, vocal expressions and physiological signals of actors enacting

various emotions, (ii) four multimodal deep belief network models and (iii)

an in-depth analysis of the effect of transfer of multimodal emotion features between

source and target networks on classification accuracy and training time. These related

contributions help comprehend the challenges involved in training deep learning

models and motivate the main goal of this dissertation.
ContributorsRanganathan, Hiranmayi (Author) / Sethuraman, Panchanathan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Li, Baoxin (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2018