Matching Items (17)
Filtering by

Clear all filters

132750-Thumbnail Image.png
Description
Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has made deep learning as a replacement for many conventional machine learning techniques. Training Deep Neural networks require a lot of

Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has made deep learning as a replacement for many conventional machine learning techniques. Training Deep Neural networks require a lot of data, and therefore vast of amounts of computing resources to process the data and train the model for the neural network. The most obvious solution to solving this problem is to speed up the time it takes to train Deep Neural networks.
AI and deep learning workloads are different from the conventional cloud and mobile workloads, with respect to: (1) Computational Intensity, (2) I/O characteristics, and (3) communication pattern. While there is a considerable amount of research activity on the theoretical aspects of AI and Deep Learning algorithms that run with greater efficiency, there are only a few studies on the infrastructural impact of Deep Learning workloads on computing and storage resources in distributed systems.
It is typical to utilize a heterogeneous mixture of CPU and GPU devices to perform training on a neural network. Google Brain has a developed a reinforcement model that can place training operations across a heterogeneous cluster. Though it has only been tested with local devices in a single cluster. This study will explore the method’s capabilities and attempt to apply this method on a cluster with nodes across a network.
ContributorsNguyen, Andrew Hoang (Author) / Zhao, Ming (Thesis director) / Biookaghazadeh, Saman (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized images of breast tissue samples, called fine-needle aspirates. Breast cancer diagnosis typically involves a combination of mammography, ultrasound, and biopsy. However, machine learning algorithms can assist in the detection and diagnosis of breast cancer by analyzing large amounts of data and identifying patterns that may not be discernible to the human eye. By using these algorithms, healthcare professionals can potentially detect breast cancer at an earlier stage, leading to more effective treatment and better patient outcomes. The results showed that the gradient boosting classifier performed the best, achieving an accuracy of 96% on the test set. This indicates that this algorithm can be a useful tool for healthcare professionals in the early detection and diagnosis of breast cancer, potentially leading to improved patient outcomes.

ContributorsMallya, Aatmik (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as

This research paper explores the effects of data variance on the quality of Artificial Intelligence image generation models and the impact on a viewer's perception of the generated images. The study examines how the quality and accuracy of the images produced by these models are influenced by factors such as size, labeling, and format of the training data. The findings suggest that reducing the training dataset size can lead to a decrease in image coherence, indicating that AI models get worse as the training dataset gets smaller. Moreover, the study makes surprising discoveries regarding AI image generation models that are trained on highly varied datasets. In addition, the study involves a survey in which people were asked to rate the subjective realism of the generated images on a scale ranging from 1 to 5 as well as sorting the images into their respective classes. The findings of this study emphasize the importance of considering dataset variance and size as a critical aspect of improving image generation models as well as the implications of using AI technology in the future.

ContributorsPunyamurthula, Rushil (Author) / Carter, Lynn (Thesis director) / Sarmento, Rick (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
165124-Thumbnail Image.png
Description

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing

Molecular pathology makes use of estimates of tumor content (tumor percentage) for pre-analytic and analytic purposes, such as molecular oncology testing, massive parallel sequencing, or next-generation sequencing (NGS), assessment of sample acceptability, accurate quantitation of variants, assessment of copy number changes (among other applications), determination of specimen viability for testing (since many assays require a minimum tumor content to report variants at the limit of detection) may all be improved with more accurate and reproducible estimates of tumor content. Currently, tumor percentages of samples submitted for molecular testing are estimated by visual examination of Hematoxylin and Eosin (H&E) stained tissue slides under the microscope by pathologists. These estimations can be automated, expedited, and rendered more accurate by applying machine learning methods on digital whole slide images (WSI).

ContributorsCirelli, Claire (Author) / Yang, Yezhou (Thesis director) / Yalim, Jason (Committee member) / Velu, Priya (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
This thesis investigates the quality and usefulness of "DeepDEMs" from Moon and Mars images, which are Digital Elevation Models (DEMs) created using deep learning from single optical images. High-resolution DEMs of Moon and Mars are increasingly critical for gaining insights into the slope and the elevation of the terrain in

This thesis investigates the quality and usefulness of "DeepDEMs" from Moon and Mars images, which are Digital Elevation Models (DEMs) created using deep learning from single optical images. High-resolution DEMs of Moon and Mars are increasingly critical for gaining insights into the slope and the elevation of the terrain in the region which helps in identifying the landing sites of possible manned missions and rovers. However, many locations of interest to scientists who use remote sensing to study the Earth or other planetary bodies have only visible image data coverage, and not repeated stereo image coverage or other data collected specifically for DEM generation. Thus, Earth and planetary scientists, geographers, and other academics want DEMs in many locations where no data resources (repeat coverage or intensive remote sensing campaigns) have been assigned for geomorphic or topographic study. One specific use for deep learning-generated terrain models would be to assess probable sites in the lunar south polar area for NASA's future Artemis III mission which aims to return people to the lunar surface. While conventional techniques (for example, needing two stereo pictures from satellites for photogrammetry) work well, this high-resolution data only covers a small portion of the planets. Furthermore, older approaches need lengthy processing durations as well as human calibration and tweaking to achieve high-quality DEMs. To address the coverage and processing time concerns, we evaluated deep learning algorithms for creating DEMs of the Moon and Mars' surfaces. We explore how the findings of this study may be used to create elevation models for planetary mapping in the future using automated methods.
ContributorsJain, Rini (Author) / Rastogi, Anant (Co-author) / Kerner, Hannah (Thesis director) / Adler, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor)
Created2024-05