Matching Items (13)
Filtering by

Clear all filters

151532-Thumbnail Image.png
Description
Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the

Modern day gas turbine designers face the problem of hot mainstream gas ingestion into rotor-stator disk cavities. To counter this ingestion, seals are installed on the rotor and stator disk rims and purge air, bled off from the compressor, is injected into the cavities. It is desirable to reduce the supply of purge air as this decreases the net power output as well as efficiency of the gas turbine. Since the purge air influences the disk cavity flow field and effectively the amount of ingestion, the aim of this work was to study the cavity velocity field experimentally using Particle Image Velocimetry (PIV). Experiments were carried out in a model single-stage axial flow turbine set-up that featured blades as well as vanes, with purge air supplied at the hub of the rotor-stator disk cavity. Along with the rotor and stator rim seals, an inner labyrinth seal was provided which split the disk cavity into a rim cavity and an inner cavity. First, static gage pressure distribution was measured to ensure that nominally steady flow conditions had been achieved. The PIV experiments were then performed to map the velocity field on the radial-tangential plane within the rim cavity at four axial locations. Instantaneous velocity maps obtained by PIV were analyzed sector-by-sector to understand the rim cavity flow field. It was observed that the tangential velocity dominated the cavity flow at low purge air flow rate, its dominance decreasing with increase in the purge air flow rate. Radially inboard of the rim cavity, negative radial velocity near the stator surface and positive radial velocity near the rotor surface indicated the presence of a recirculation region in the cavity whose radial extent increased with increase in the purge air flow rate. Qualitative flow streamline patterns are plotted within the rim cavity for different experimental conditions by combining the PIV map information with ingestion measurements within the cavity as reported in Thiagarajan (2013).
ContributorsPathak, Parag (Author) / Roy, Ramendra P (Thesis advisor) / Calhoun, Ronald (Committee member) / Lee, Taewoo (Committee member) / Arizona State University (Publisher)
Created2013
157226-Thumbnail Image.png
Description
Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of

Rapid intraoperative diagnosis of brain tumors is of great importance for planning treatment and guiding the surgeon about the extent of resection. Currently, the standard for the preliminary intraoperative tissue analysis is frozen section biopsy that has major limitations such as tissue freezing and cutting artifacts, sampling errors, lack of immediate interaction between the pathologist and the surgeon, and time consuming.

Handheld, portable confocal laser endomicroscopy (CLE) is being explored in neurosurgery for its ability to image histopathological features of tissue at cellular resolution in real time during brain tumor surgery. Over the course of examination of the surgical tumor resection, hundreds to thousands of images may be collected. The high number of images requires significant time and storage load for subsequent reviewing, which motivated several research groups to employ deep convolutional neural networks (DCNNs) to improve its utility during surgery. DCNNs have proven to be useful in natural and medical image analysis tasks such as classification, object detection, and image segmentation.

This thesis proposes using DCNNs for analyzing CLE images of brain tumors. Particularly, it explores the practicality of DCNNs in three main tasks. First, off-the shelf DCNNs were used to classify images into diagnostic and non-diagnostic. Further experiments showed that both ensemble modeling and transfer learning improved the classifier’s accuracy in evaluating the diagnostic quality of new images at test stage. Second, a weakly-supervised learning pipeline was developed for localizing key features of diagnostic CLE images from gliomas. Third, image style transfer was used to improve the diagnostic quality of CLE images from glioma tumors by transforming the histology patterns in CLE images of fluorescein sodium-stained tissue into the ones in conventional hematoxylin and eosin-stained tissue slides.

These studies suggest that DCNNs are opted for analysis of CLE images. They may assist surgeons in sorting out the non-diagnostic images, highlighting the key regions and enhancing their appearance through pattern transformation in real time. With recent advances in deep learning such as generative adversarial networks and semi-supervised learning, new research directions need to be followed to discover more promises of DCNNs in CLE image analysis.
ContributorsIzady Yazdanabadi, Mohammadhassan (Author) / Preul, Mark (Thesis advisor) / Yang, Yezhou (Thesis advisor) / Nakaji, Peter (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2019
Description
YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources to host. The goal for this project is to build a classifier that identifies bot-generated channels based on a dee

YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources to host. The goal for this project is to build a classifier that identifies bot-generated channels based on a deep learning-based framework. We designed the framework to take text, audio, and video features into account. For the purpose of this thesis project, we will be focusing on text classification work.
ContributorsSai, Lun (Author) / Benjamin, Victor (Thesis director) / Lin, Elva S.Y. (Committee member) / Department of Information Systems (Contributor, Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
154534-Thumbnail Image.png
Description
Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of

Cerebral aneurysms are pathological balloonings of blood vessels in the brain, commonly found in the arterial network at the base of the brain. Cerebral aneurysm rupture can lead to a dangerous medical condition, subarachnoid hemorrhage, that is associated with high rates of morbidity and mortality. Effective evaluation and management of cerebral aneurysms is therefore essential to public health. The goal of treating an aneurysm is to isolate the aneurysm from its surrounding circulation, thereby preventing further growth and rupture. Endovascular treatment for cerebral aneurysms has gained popularity over traditional surgical techniques due to its minimally invasive nature and shorter associated recovery time. The hemodynamic modifications that the treatment effects can promote thrombus formation within the aneurysm leading to eventual isolation. However, different treatment devices can effect very different hemodynamic outcomes in aneurysms with different geometries.

Currently, cerebral aneurysm risk evaluation and treatment planning in clinical practice is largely based on geometric features of the aneurysm including the dome size, dome-to-neck ratio, and parent vessel geometry. Hemodynamics, on the other hand, although known to be deeply involved in cerebral aneurysm initiation and progression, are considered to a lesser degree. Previous work in the field of biofluid mechanics has demonstrated that geometry is a driving factor behind aneurysmal hemodynamics.

The goal of this research is to develop a more combined geometric/hemodynamic basis for informing clinical decisions. Geometric main effects were analyzed to quantify contributions made by geometric factors that describe cerebral aneurysms (i.e., dome size, dome-to-neck ratio, and inflow angle) to clinically relevant hemodynamic responses (i.e., wall shear stress, root mean square velocity magnitude and cross-neck flow). Computational templates of idealized bifurcation and sidewall aneurysms were created to satisfy a two-level full factorial design, and examined using computational fluid dynamics. A subset of the computational bifurcation templates was also translated into physical models for experimental validation using particle image velocimetry. The effects of geometry on treatment were analyzed by virtually treating the aneurysm templates with endovascular devices. The statistical relationships between geometry, treatment, and flow that emerged have the potential to play a valuable role in clinical practice.
ContributorsNair, Priya (Author) / Frakes, David (Thesis advisor) / Vernon, Brent (Committee member) / Chong, Brian (Committee member) / Pizziconi, Vincent (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2016
147647-Thumbnail Image.png
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized

Breast cancer is one of the most common types of cancer worldwide. Early detection and diagnosis are crucial for improving the chances of successful treatment and survival. In this thesis, many different machine learning algorithms were evaluated and compared to predict breast cancer malignancy from diagnostic features extracted from digitized images of breast tissue samples, called fine-needle aspirates. Breast cancer diagnosis typically involves a combination of mammography, ultrasound, and biopsy. However, machine learning algorithms can assist in the detection and diagnosis of breast cancer by analyzing large amounts of data and identifying patterns that may not be discernible to the human eye. By using these algorithms, healthcare professionals can potentially detect breast cancer at an earlier stage, leading to more effective treatment and better patient outcomes. The results showed that the gradient boosting classifier performed the best, achieving an accuracy of 96% on the test set. This indicates that this algorithm can be a useful tool for healthcare professionals in the early detection and diagnosis of breast cancer, potentially leading to improved patient outcomes.

ContributorsMallya, Aatmik (Author) / De Luca, Gennaro (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
The study tested the parameterized neural ordinary differential equation (PNODE) framework with a physical system exhibiting only advective phenomenon. Existing deep learning methods have difficulty learning multiple dynamic, continuous time processes. PNODE encodes the input data and initial parameter into a set of reduced states within the latent space. Then

The study tested the parameterized neural ordinary differential equation (PNODE) framework with a physical system exhibiting only advective phenomenon. Existing deep learning methods have difficulty learning multiple dynamic, continuous time processes. PNODE encodes the input data and initial parameter into a set of reduced states within the latent space. Then the reduced states are fitted to a system of ordinary differential equations. The outputs from the model are then decoded back to the data space for a desired input parameter and time. The application of the PNODE formalism to different types of physical systems is important to test the methods robustness. The linear advection data was generated through a high-fidelity numerical tool for multiple velocity parameters. The PNODE code was modified for the advection dataset, whose temporal domain and spatial discretization varied from the original study configuration. The L2 norm between the reconstruction and surrogate model and the reconstruction plots were used to analyze the PNODE model performance. The model reconstructions presented mixed results. For a temporal domain of 20-time units, where multiple advection cycles were completed for each advection speed, the reconstructions did not agree with the surrogate model. For a reduced temporal domain of 5-time units, the reconstructions and surrogate models were in close agreement. Near the end of the temporal domain, deviations occurred likely resulting from the accumulation of numerical errors. Note, over the 5-time units, smaller advection speed parameters were unable to complete a cycle. The behavior for the 20-time units highlighted potential issues with imbalanced datasets and repeated features. The 5-time unit model illustrates PNODEs adaptability to this class of problems when the dataset is better posed.
ContributorsReithal, Richard Robert (Author) / Kim, Jeonglae (Thesis director) / Lee, Kookjin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-12
153706-Thumbnail Image.png
Description
The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the

The application of novel visualization and modeling methods to the study of cardiovascular disease is vital to the development of innovative diagnostic techniques, including those that may aid in the early detection and prevention of cardiovascular disorders. This dissertation focuses on the application of particle image velocimetry (PIV) to the study of intracardiac hemodynamics. This is accomplished primarily though the use of ultrasound based PIV, which allows for in vivo visualization of intracardiac flow without the requirement for optical access, as is required with traditional camera-based PIV methods.

The fundamentals of ultrasound PIV are introduced, including experimental methods for its implementation as well as a discussion on estimating and mitigating measurement error. Ultrasound PIV is then compared to optical PIV; this is a highly developed technique with proven accuracy; through rigorous examination it has become the “gold standard” of two-dimensional flow visualization. Results show good agreement between the two methods.

Using a mechanical left heart model, a multi-plane ultrasound PIV technique is introduced and applied to quantify a complex, three-dimensional flow that is analogous to the left intraventricular flow. Changes in ventricular flow dynamics due to the rotational orientation of mechanical heart valves are studied; the results demonstrate the importance of multi-plane imaging techniques when trying to assess the strongly three-dimensional intraventricular flow.

The potential use of ultrasound PIV as an early diagnosis technique is demonstrated through the development of a novel elasticity estimation technique. A finite element analysis routine is couple with an ensemble Kalman filter to allow for the estimation of material elasticity using forcing and displacement data derived from PIV. Results demonstrate that it is possible to estimate elasticity using forcing data derived from a PIV vector field, provided vector density is sufficient.
ContributorsWesterdale, John Curtis (Author) / Adrian, Ronald (Thesis advisor) / Belohlavek, Marek (Committee member) / Squires, Kyle (Committee member) / Trimble, Steve (Committee member) / Frakes, David (Committee member) / Arizona State University (Publisher)
Created2015
154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
ContributorsChaudhury, Rafeed Ahmed (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald J (Thesis advisor) / Vernon, Brent (Committee member) / Pizziconi, Vincent (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2015
131135-Thumbnail Image.png
Description
Accurate pose initialization and pose estimation are crucial requirements in on-orbit space assembly and various other autonomous on-orbit tasks. However, pose initialization and pose estimation are much more difficult to do accurately and consistently in space. This is primarily due to not only the variable lighting conditions present in space,

Accurate pose initialization and pose estimation are crucial requirements in on-orbit space assembly and various other autonomous on-orbit tasks. However, pose initialization and pose estimation are much more difficult to do accurately and consistently in space. This is primarily due to not only the variable lighting conditions present in space, but also the power requirements mandated by space-flyable hardware. This thesis investigates leveraging a deep learning approach for monocular one-shot pose initialization and pose estimation. A convolutional neural network was used to estimate the 6D pose of an assembly truss object. This network was trained by utilizing synthetic imagery generated from a simulation testbed. Furthermore, techniques to quantify model uncertainty of the deep learning model were investigated and applied in the task of in-space pose estimation and pose initialization. The feasibility of this approach on low-power computational platforms was also tested. The results demonstrate that accurate pose initialization and pose estimation can be conducted using a convolutional neural network. In addition, the results show that the model uncertainty can be obtained from the network. Lastly, the use of deep learning for pose initialization and pose estimation in addition with uncertainty quantification was demonstrated to be feasible on low-power compute platforms.
ContributorsKailas, Siva Maneparambil (Author) / Ben Amor, Heni (Thesis director) / Detry, Renaud (Committee member) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05