Matching Items (25)
Filtering by

Clear all filters

152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
153988-Thumbnail Image.png
Description
With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain

With the advent of Internet, the data being added online is increasing at enormous rate. Though search engines are using IR techniques to facilitate the search requests from users, the results are not effective towards the search query of the user. The search engine user has to go through certain webpages before getting at the webpage he/she wanted. This problem of Information Overload can be solved using Automatic Text Summarization. Summarization is a process of obtaining at abridged version of documents so that user can have a quick view to understand what exactly the document is about. Email threads from W3C are used in this system. Apart from common IR features like Term Frequency, Inverse Document Frequency, Term Rank, a variation of page rank based on graph model, which can cluster the words with respective to word ambiguity, is implemented. Term Rank also considers the possibility of co-occurrence of words with the corpus and evaluates the rank of the word accordingly. Sentences of email threads are ranked as per features and summaries are generated. System implemented the concept of pyramid evaluation in content selection. The system can be considered as a framework for Unsupervised Learning in text summarization.
ContributorsNadella, Sravan (Author) / Davulcu, Hasan (Thesis advisor) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2015
155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
ContributorsVenkatesan, Ragav (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156468-Thumbnail Image.png
Description
With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and

With the emergence of edge computing paradigm, many applications such as image recognition and augmented reality require to perform machine learning (ML) and artificial intelligence (AI) tasks on edge devices. Most AI and ML models are large and computational heavy, whereas edge devices are usually equipped with limited computational and storage resources. Such models can be compressed and reduced in order to be placed on edge devices, but they may loose their capability and may not generalize and perform well compared to large models. Recent works used knowledge transfer techniques to transfer information from a large network (termed teacher) to a small one (termed student) in order to improve the performance of the latter. This approach seems to be promising for learning on edge devices, but a thorough investigation on its effectiveness is lacking.

The purpose of this work is to provide an extensive study on the performance (both in terms of accuracy and convergence speed) of knowledge transfer, considering different student-teacher architectures, datasets and different techniques for transferring knowledge from teacher to student.

A good performance improvement is obtained by transferring knowledge from both the intermediate layers and last layer of the teacher to a shallower student. But other architectures and transfer techniques do not fare so well and some of them even lead to negative performance impact. For example, a smaller and shorter network, trained with knowledge transfer on Caltech 101 achieved a significant improvement of 7.36\% in the accuracy and converges 16 times faster compared to the same network trained without knowledge transfer. On the other hand, smaller network which is thinner than the teacher network performed worse with an accuracy drop of 9.48\% on Caltech 101, even with utilization of knowledge transfer.
ContributorsSistla, Ragini (Author) / Zhao, Ming (Thesis advisor, Committee member) / Li, Baoxin (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
156219-Thumbnail Image.png
Description
Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive

Deep learning architectures have been widely explored in computer vision and have

depicted commendable performance in a variety of applications. A fundamental challenge

in training deep networks is the requirement of large amounts of labeled training

data. While gathering large quantities of unlabeled data is cheap and easy, annotating

the data is an expensive process in terms of time, labor and human expertise.

Thus, developing algorithms that minimize the human effort in training deep models

is of immense practical importance. Active learning algorithms automatically identify

salient and exemplar samples from large amounts of unlabeled data and can augment

maximal information to supervised learning models, thereby reducing the human annotation

effort in training machine learning models. The goal of this dissertation is to

fuse ideas from deep learning and active learning and design novel deep active learning

algorithms. The proposed learning methodologies explore diverse label spaces to

solve different computer vision applications. Three major contributions have emerged

from this work; (i) a deep active framework for multi-class image classication, (ii)

a deep active model with and without label correlation for multi-label image classi-

cation and (iii) a deep active paradigm for regression. Extensive empirical studies

on a variety of multi-class, multi-label and regression vision datasets corroborate the

potential of the proposed methods for real-world applications. Additional contributions

include: (i) a multimodal emotion database consisting of recordings of facial

expressions, body gestures, vocal expressions and physiological signals of actors enacting

various emotions, (ii) four multimodal deep belief network models and (iii)

an in-depth analysis of the effect of transfer of multimodal emotion features between

source and target networks on classification accuracy and training time. These related

contributions help comprehend the challenges involved in training deep learning

models and motivate the main goal of this dissertation.
ContributorsRanganathan, Hiranmayi (Author) / Sethuraman, Panchanathan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Li, Baoxin (Committee member) / Chakraborty, Shayok (Committee member) / Arizona State University (Publisher)
Created2018
156747-Thumbnail Image.png
Description
Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use

Mixture of experts is a machine learning ensemble approach that consists of individual models that are trained to be ``experts'' on subsets of the data, and a gating network that provides weights to output a combination of the expert predictions. Mixture of experts models do not currently see wide use due to difficulty in training diverse experts and high computational requirements. This work presents modifications of the mixture of experts formulation that use domain knowledge to improve training, and incorporate parameter sharing among experts to reduce computational requirements.

First, this work presents an application of mixture of experts models for quality robust visual recognition. First it is shown that human subjects outperform deep neural networks on classification of distorted images, and then propose a model, MixQualNet, that is more robust to distortions. The proposed model consists of ``experts'' that are trained on a particular type of image distortion. The final output of the model is a weighted sum of the expert models, where the weights are determined by a separate gating network. The proposed model also incorporates weight sharing to reduce the number of parameters, as well as increase performance.



Second, an application of mixture of experts to predict visual saliency is presented. A computational saliency model attempts to predict where humans will look in an image. In the proposed model, each expert network is trained to predict saliency for a set of closely related images. The final saliency map is computed as a weighted mixture of the expert networks' outputs, with weights determined by a separate gating network. The proposed model achieves better performance than several other visual saliency models and a baseline non-mixture model.

Finally, this work introduces a saliency model that is a weighted mixture of models trained for different levels of saliency. Levels of saliency include high saliency, which corresponds to regions where almost all subjects look, and low saliency, which corresponds to regions where some, but not all subjects look. The weighted mixture shows improved performance compared with baseline models because of the diversity of the individual model predictions.
ContributorsDodge, Samuel Fuller (Author) / Karam, Lina (Thesis advisor) / Jayasuriya, Suren (Committee member) / Li, Baoxin (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2018
156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018