Matching Items (22)

Filtering by

Clear all filters

133339-Thumbnail Image.png

Prescription Information Extraction from Electronic Health Records using BiLSTM-CRF and Word Embeddings

Description

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.

Contributors

Agent

Created

Date Created
2018-05

132574-Thumbnail Image.png

Pose Estimation with Convolutional Neural Networks

Description

Convolutional neural networks boast a myriad of applications in artificial intelligence, but one of the most common uses for such networks is image extraction. The ability of convolutional layers to extract and combine data features for the purpose of image

Convolutional neural networks boast a myriad of applications in artificial intelligence, but one of the most common uses for such networks is image extraction. The ability of convolutional layers to extract and combine data features for the purpose of image analysis can be leveraged for pose estimation on an object - detecting the presence and attitude of corners and edges allows a convolutional neural network to identify how an object is positioned. This task can assist in working to grasp an object correctly in robotics applications, or to track an object more accurately in 3D space. However, the effectiveness of pose estimation may change based on properties of the object; the pose of a complex object, complexity being determined by internal occlusions, similar faces, etcetera, can be difficult to resolve.
This thesis is part of a collaboration between ASU’s Interactive Robotics Laboratory and NASA’s Jet Propulsion Laboratory. In this thesis, the training pipeline from Sharma’s paper “Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Convolutional Neural Networks” was modified to perform pose estimation on a complex object - specifically, a segment of a hollow truss. After initial attempts to replicate the architecture used in the paper and train solely on synthetic images, a combination of synthetic dataset generation and transfer learning on an ImageNet-pretrained AlexNet model was implemented to mitigate the difficulty of gathering large amounts of real-world data. Experimentation with pose estimation accuracy and hyperparameters of the model resulted in gradual test accuracy improvement, and future work is suggested to improve pose estimation for complex objects with some form of rotational symmetry.

Contributors

Created

Date Created
2019-05

132750-Thumbnail Image.png

A Study on Resources Utilization of Deep Learning Workloads

Description

Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has made deep learning as a replacement for many conventional machine

Deep learning and AI have grabbed tremendous attention in the last decade. The substantial accuracy improvement by neural networks in common tasks such as image classification and speech recognition has made deep learning as a replacement for many conventional machine learning techniques. Training Deep Neural networks require a lot of data, and therefore vast of amounts of computing resources to process the data and train the model for the neural network. The most obvious solution to solving this problem is to speed up the time it takes to train Deep Neural networks.
AI and deep learning workloads are different from the conventional cloud and mobile workloads, with respect to: (1) Computational Intensity, (2) I/O characteristics, and (3) communication pattern. While there is a considerable amount of research activity on the theoretical aspects of AI and Deep Learning algorithms that run with greater efficiency, there are only a few studies on the infrastructural impact of Deep Learning workloads on computing and storage resources in distributed systems.
It is typical to utilize a heterogeneous mixture of CPU and GPU devices to perform training on a neural network. Google Brain has a developed a reinforcement model that can place training operations across a heterogeneous cluster. Though it has only been tested with local devices in a single cluster. This study will explore the method’s capabilities and attempt to apply this method on a cluster with nodes across a network.

Contributors

Agent

Created

Date Created
2019-05

133515-Thumbnail Image.png

Instructional Design with Natural Language Processing in a Virtual Reality Environment

Description

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In

Natural Language Processing and Virtual Reality are hot topics in the present. How can we synthesize these together in order to make a cohesive experience? The game focuses on users using vocal commands, building structures, and memorizing spatial objects. In order to get proper vocal commands, the IBM Watson API for Natural Language Processing was incorporated into our game system. User experience elements like gestures, UI color change, and images were used to help guide users in memorizing and building structures. The process to create these elements were streamlined through the VRTK library in Unity. The game has two segments. The first segment is a tutorial level where the user learns to perform motions and in-game actions. The second segment is a game where the user must correctly create a structure by utilizing vocal commands and spatial recognition. A standardized usability test, System Usability Scale, was used to evaluate the effectiveness of the game. A survey was also created in order to evaluate a more descriptive user opinion. Overall, users gave a positive score on the System Usability Scale and slightly positive reviews in the custom survey.

Contributors

Agent

Created

Date Created
2018-05

132921-Thumbnail Image.png

Determining the Viability of an asymmetric and co-operative VR experience for two players utilizing a single VR headset and keyboard and mouse

Description

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays,

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.

Contributors

Agent

Created

Date Created
2019-05

133565-Thumbnail Image.png

Jaipur Simulation and AI

Description

This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are

This paper details the process for designing both a simulation of the board game Jaipur, and an artificial intelligence (AI) agent that can play the game against a human player. When designing an AI for a card game, there are two major problems that can arise. The first is the difficulty of using a search space to analyze every possible set of future moves. Due to the randomized nature of the deck of cards, the search space rapidly leads to an exponentially growing set of potential game states to analyze when one tries to look more than one turn ahead. The second aspect that poses difficulty is the element of uncertainty that exists from opponent feedback. Certain moves are weak to specific opponent reactions, and these are difficult to predict due to hidden information. To circumvent these problems, the AI uses a greedy approach to decision making, attempting to maximize the value of its plays immediately, and not play for future turns. The agent utilizes conditional statements to evaluate the game state and choose a game action that it deems optimal, a heuristic to place an expected value (EV) of the goods it can choose from, and selects the best one based on this evaluation. Initial implementation of the simulation was done using C++ through a terminal application, and then was translated to a graphical interface using Unity and C#.

Contributors

Agent

Created

Date Created
2018-05

131274-Thumbnail Image.png

Improving upon the State-of-the-Art in Multimodal Emotional Recognition in Dialogue

Description

Emotion recognition in conversation has applications within numerous domains such as affective computing and medicine. Recent methods for emotion recognition jointly utilize conversational data over several modalities including audio, video, and text. However, state-of-the-art frameworks for this task do not

Emotion recognition in conversation has applications within numerous domains such as affective computing and medicine. Recent methods for emotion recognition jointly utilize conversational data over several modalities including audio, video, and text. However, state-of-the-art frameworks for this task do not focus on the feature extraction and feature fusion steps of this process. This thesis aims to improve the state-of-the-art method by incorporating two components to better accomplish these steps. By doing so, we are able to produce improved representations for the text modality and better model the relationships between all modalities. This paper proposes two methods which focus on these concepts and provide improved accuracy over the state-of-the-art framework for multimodal emotion recognition in dialogue.

Contributors

Agent

Created

Date Created
2020-05

134486-Thumbnail Image.png

Development of an Educational Video Game

Description

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale

The objective of this creative project was to gain experience in digital modeling, animation, coding, shader development and implementation, model integration techniques, and application of gaming principles and design through developing a professional educational game. The team collaborated with Glendale Community College (GCC) to produce an interactive product intended to supplement educational instructions regarding nutrition. The educational game developed, "Nutribots" features the player acting as a nutrition based nanobot sent to the small intestine to help the body. Throughout the game the player will be asked nutrition based questions to test their knowledge of proteins, carbohydrates, and lipids. If the player is unable to answer the question, they must use game mechanics to progress and receive the information as a reward. The level is completed as soon as the question is answered correctly. If the player answers the questions incorrectly twenty times within the entirety of the game, the team loses faith in the player, and the player must reset from title screen. This is to limit guessing and to make sure the player retains the information through repetition once it is demonstrated that they do not know the answers. The team was split into two different groups for the development of this game. The first part of the team developed models, animations, and textures using Autodesk Maya 2016 and Marvelous Designer. The second part of the team developed code and shaders, and implemented products from the first team using Unity and Visual Studio. Once a prototype of the game was developed, it was show-cased amongst peers to gain feedback. Upon receiving feedback, the team implemented the desired changes accordingly. Development for this project began on November 2015 and ended on April 2017. Special thanks to Laura Avila Department Chair and Jennifer Nolz from Glendale Community College Technology and Consumer Sciences, Food and Nutrition Department.

Contributors

Created

Date Created
2017-05

132967-Thumbnail Image.png

Learning Generalized Heuristics Using Deep Neural Networks

Description

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.

Contributors

Created

Date Created
2019-05

135660-Thumbnail Image.png

Convolutional Neural Networks for Facial Expression Recognition

Description

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.

Contributors

Agent

Created

Date Created
2016-05