Matching Items (12)
Filtering by

Clear all filters

153478-Thumbnail Image.png
Description
US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.
ContributorsGokalp, Sedat (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2015
150836-Thumbnail Image.png
Description
Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical

Muslim radicalism is recognized as one of the greatest security threats for the United States and the rest of the world. Use of force to eliminate specific radical entities is ineffective in containing radicalism as a whole. There is a need to understand the origin, ideologies and behavior of Radical and Counter-Radical organizations and how they shape up over a period of time. Recognizing and supporting counter-radical organizations is one of the most important steps towards impeding radical organizations. A lot of research has already been done to categorize and recognize organizations, to understand their behavior, their interactions with other organizations, their target demographics and the area of influence. We have a huge amount of information which is a result of the research done over these topics. This thesis provides a powerful and interactive way to navigate through all this information, using a Visualization Dashboard. The dashboard makes it easier for Social Scientists, Policy Analysts, Military and other personnel to visualize an organization's propensity towards violence and radicalism. It also tracks the peaking religious, political and socio-economic markers, their target demographics and locations. A powerful search interface with parametric search helps in narrowing down to specific scenarios and view the corresponding information related to the organizations. This tool helps to identify moderate Counter-Radical organizations and also has the potential of predicting the orientation of various organizations based on the current information.
ContributorsNair, Shreejay (Author) / Davulcu, Hasan (Thesis advisor) / Dasgpta, Partha (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
ContributorsVenkatesan, Ragav (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156084-Thumbnail Image.png
Description
The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle

The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos.

The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss.

In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.
ContributorsChandakkar, Parag Shridhar (Author) / Li, Baoxin (Thesis advisor) / Yang, Yezhou (Committee member) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156430-Thumbnail Image.png
Description
Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the feature space to learn transferable and disentangled rep-

resentations. Transferable feature representations help in training machine learning

models that are robust across different distributions of data. For example, with the

application of transferable features in domain adaptation, models trained on a source

distribution can be applied to a data from a target distribution even though the dis-

tributions may be different. In style transfer and image-to-image translation, disen-

tangled representations allow for the separation of style and content when translating

images.

This thesis examines learning transferable data representations in novel deep gen-

erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-

ial methods and cross-domain weight sharing in a neural network to extract trans-

ferable representations. These transferable interpretations can then be decoded into

the original image or a similar image in another domain. The Explicit Disentangling

Network (EDN) utilizes generative methods to disentangle images into their core at-

tributes and then segments sets of related attributes. The EDN can separate these

attributes by controlling the ow of information using a novel combination of losses

and network architecture. This separation of attributes allows precise modi_cations

to speci_c components of the data representation, boosting the performance of ma-

chine learning tasks. The effectiveness of these models is evaluated across domain

adaptation, style transfer, and image-to-image translation tasks.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2018
156475-Thumbnail Image.png
Description
This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral

This research start utilizing an efficient sparse inverse covariance matrix (precision matrix) estimation technique to identify a set of highly correlated discriminative perspectives between radical and counter-radical groups. A ranking system has been developed that utilizes ranked perspectives to map Islamic organizations on a set of socio-cultural, political and behavioral scales based on their web site corpus. Simultaneously, a gold standard ranking of these organizations was created through domain experts and compute expert-to-expert agreements and present experimental results comparing the performance of the QUIC based scaling system to another baseline method for organizations. The QUIC based algorithm not only outperforms the baseline methods, but it is also the only system that consistently performs at area expert-level accuracies for all scales. Also, a multi-scale ideological model has been developed and it investigates the correlates of Islamic extremism in Indonesia, Nigeria and UK. This analysis demonstrate that violence does not correlate strongly with broad Muslim theological or sectarian orientations; it shows that religious diversity intolerance is the only consistent and statistically significant ideological correlate of Islamic extremism in these countries, alongside desire for political change in UK and Indonesia, and social change in Nigeria. Next, dynamic issues and communities tracking system based on NMF(Non-negative Matrix Factorization) co-clustering algorithm has been built to better understand the dynamics of virtual communities. The system used between Iran and Saudi Arabia to build and apply a multi-party agent-based model that can demonstrate the role of wedges and spoilers in a complex environment where coalitions are dynamic. Lastly, a visual intelligence platform for tracking the diffusion of online social movements has been developed called LookingGlass to track the geographical footprint, shifting positions and flows of individuals, topics and perspectives between groups. The algorithm utilize large amounts of text collected from a wide variety of organizations’ media outlets to discover their hotly debated topics, and their discriminative perspectives voiced by opposing camps organized into multiple scales. Discriminating perspectives is utilized to classify and map individual Tweeter’s message content to social movements based on the perspectives expressed in their tweets.
ContributorsKim, Nyunsu (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Hsiao, Sharon (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
157174-Thumbnail Image.png
Description
Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.
ContributorsYildirim, Mehmet Yigit (Author) / Davulcu, Hasan (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Huang, Dijiang (Committee member) / Hsiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2019
134809-Thumbnail Image.png
Description
Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a

Social media has become a direct and effective means of transmitting personal opinions into the cyberspace. The use of certain key-words and their connotations in tweets portray a meaning that goes beyond the screen and affects behavior. During terror attacks or worldwide crises, people turn to social media as a means of managing their anxiety, a mechanism of Terror Management Theory (TMT). These opinions have distinct impacts on the emotions that people express both online and offline through both positive and negative sentiments. This paper focuses on using sentiment analysis on twitter hash-tags during five major terrorist attacks that created a significant response on social media, which collectively show the effects that 140-character tweets have on perceptions in social media. The purpose of analyzing the sentiments of tweets after terror attacks allows for the visualization of the effect of key-words and the possibility of manipulation by the use of emotional contagion. Through sentiment analysis, positive, negative and neutral emotions were portrayed in the tweets. The keywords detected also portray characteristics about terror attacks which would allow for future analysis and predictions in regards to propagating a specific emotion on social media during future crisis.
ContributorsHarikumar, Swathikrishna (Author) / Davulcu, Hasan (Thesis director) / Bodford, Jessica (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154403-Thumbnail Image.png
Description
Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would not be apparent in tabular form. However, several critical challenges arise when visualizing and exploring these large spatiotemporal datasets. While, the underlying geographical component of the data lends itself well to univariate visualization in the form of traditional cartographic representations (e.g., choropleth, isopleth, dasymetric maps), as the data becomes multivariate, cartographic representations become more complex. To simplify the visual representations, analytical methods such as clustering and feature extraction are often applied as part of the classification phase. The automatic classification can then be rendered onto a map; however, one common issue in data classification is that items near a classification boundary are often mislabeled.

This thesis explores methods to augment the automated spatial classification by utilizing interactive machine learning as part of the cluster creation step. First, this thesis explores the design space for spatiotemporal analysis through the development of a comprehensive data wrangling and exploratory data analysis platform. Second, this system is augmented with a novel method for evaluating the visual impact of edge cases for multivariate geographic projections. Finally, system features and functionality are demonstrated through a series of case studies, with key features including similarity analysis, multivariate clustering, and novel visual support for cluster comparison.
ContributorsZhang, Yifan (Author) / Maciejewski, Ross (Thesis advisor) / Mack, Elizabeth (Committee member) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2016
154885-Thumbnail Image.png
Description
Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their

Computational visual aesthetics has recently become an active research area. Existing state-of-art methods formulate this as a binary classification task where a given image is predicted to be beautiful or not. In many applications such as image retrieval and enhancement, it is more important to rank images based on their aesthetic quality instead of binary-categorizing them. Furthermore, in such applications, it may be possible that all images belong to the same category. Hence determining the aesthetic ranking of the images is more appropriate. To this end, a novel problem of ranking images with respect to their aesthetic quality is formulated in this work. A new data-set of image pairs with relative labels is constructed by carefully selecting images from the popular AVA data-set. Unlike in aesthetics classification, there is no single threshold which would determine the ranking order of the images across the entire data-set.

This problem is attempted using a deep neural network based approach that is trained on image pairs by incorporating principles from relative learning. Results show that such relative training procedure allows the network to rank the images with a higher accuracy than a state-of-art network trained on the same set of images using binary labels. Further analyzing the results show that training a model using the image pairs learnt better aesthetic features than training on same number of individual binary labelled images.

Additionally, an attempt is made at enhancing the performance of the system by incorporating saliency related information. Given an image, humans might fixate their vision on particular parts of the image, which they might be subconsciously intrigued to. I therefore tried to utilize the saliency information both stand-alone as well as in combination with the global and local aesthetic features by performing two separate sets of experiments. In both the cases, a standard saliency model is chosen and the generated saliency maps are convoluted with the images prior to passing them to the network, thus giving higher importance to the salient regions as compared to the remaining. Thus generated saliency-images are either used independently or along with the global and the local features to train the network. Empirical results show that the saliency related aesthetic features might already be learnt by the network as a sub-set of the global features from automatic feature extraction, thus proving the redundancy of the additional saliency module.
ContributorsGattupalli, Jaya Vijetha (Author) / Li, Baoxin (Thesis advisor) / Davulcu, Hasan (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2016