Matching Items (3)
Filtering by

Clear all filters

153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
158101-Thumbnail Image.png
Description
Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as

Driving is the coordinated operation of mind and body for movement of a vehicle, such as a car, or a bus. Driving, being considered an everyday activity for many people, still has an issue of safety. Driver distraction is becoming a critical safety problem. Speed, drunk driving as well as distracted driving are the three leading factors in the fatal car crashes. Distraction, which is defined as an excessive workload and limited attention, is the main paradigm that guides this research area. Driver behavior analysis can be used to address the distraction problem and provide an intelligent adaptive agent to work closely with the driver, fay beyond traditional algorithmic computational models. A variety of machine learning approaches has been proposed to estimate or predict drivers’ fatigue level using car data, driver status or a combination of them.

Three important features of intelligence and cognition are perception, attention and sensory memory. In this thesis, I focused on memory and attention as essential parts of highly intelligent systems. Without memory, systems will only show limited intelligence since their response would be exclusively based on spontaneous decision without considering the effect of previous events. I proposed a memory-based sequence to predict the driver behavior and distraction level using neural network. The work started with a large-scale experiment to collect data and make an artificial intelligence-friendly dataset. After that, the data was used to train a deep neural network to estimate the driver behavior. With a focus on memory by using Long Short Term Memory (LSTM) network to increase the level of intelligence in two dimensions: Forgiveness of minor glitches, and accumulation of anomalous behavior., I reduced the model error and computational expense by adding attention mechanism on the top of LSTM models. This system can be generalized to build and train highly intelligent agents in other domains.
ContributorsMonjezi Kouchak, Shokoufeh (Author) / Gaffar, Ashraf (Thesis advisor) / Doupe, Adam (Committee member) / Ben Amor, Hani (Committee member) / Cheeks, Loretta (Committee member) / Arizona State University (Publisher)
Created2020
158273-Thumbnail Image.png
Description
Traumatic injuries are the leading cause of death in children under 18, with head trauma being the leading cause of death in children below 5. A large but unknown number of traumatic injuries are non-accidental, i.e. inflicted. The lack of sensitivity and specificity required to diagnose Abusive Head Trauma (AHT)

Traumatic injuries are the leading cause of death in children under 18, with head trauma being the leading cause of death in children below 5. A large but unknown number of traumatic injuries are non-accidental, i.e. inflicted. The lack of sensitivity and specificity required to diagnose Abusive Head Trauma (AHT) from radiological studies results in putting the children at risk of re-injury and death. Modern Deep Learning techniques can be utilized to detect Abusive Head Trauma using Computer Tomography (CT) scans. Training models using these techniques are only a part of building AI-driven Computer-Aided Diagnostic systems. There are challenges in deploying the models to make them highly available and scalable.

The thesis models the domain of Abusive Head Trauma using Deep Learning techniques and builds an AI-driven System at scale using best Software Engineering Practices. It has been done in collaboration with Phoenix Children Hospital (PCH). The thesis breaks down AHT into sub-domains of Medical Knowledge, Data Collection, Data Pre-processing, Image Generation, Image Classification, Building APIs, Containers and Kubernetes. Data Collection and Pre-processing were done at PCH with the help of trauma researchers and radiologists. Experiments are run using Deep Learning models such as DCGAN (for Image Generation), Pretrained 2D and custom 3D CNN classifiers for the classification tasks. The trained models are exposed as APIs using the Flask web framework, contained using Docker and deployed on a Kubernetes cluster.



The results are analyzed based on the accuracy of the models, the feasibility of their implementation as APIs and load testing the Kubernetes cluster. They suggest the need for Data Annotation at the Slice level for CT scans and an increase in the Data Collection process. Load Testing reveals the auto-scalability feature of the cluster to serve a high number of requests.
ContributorsVikram, Aditya (Author) / Sanchez, Javier Gonzalez (Thesis advisor) / Gaffar, Ashraf (Thesis advisor) / Findler, Michael (Committee member) / Arizona State University (Publisher)
Created2020